European genetic gradients of modern humans were initially interpreted as a consequence of the demic diffusion of expanding Neolithic farmers. However, recent studies showed that these gradients may also be influenced by other evolutionary processes such as population admixture or range contractions. Genetic gradients were observed in the Americas, although their specific evolutionary causes were not investigated. Here we extended the approach used to study genetic gradients in Europe to analyze the influence of diverse evolutionary scenarios on American genetic gradients. Using extensive computer simulations, we evaluated the impact of (i) admixture between expansion waves of modern humans, (ii) the presence of ice-sheets during the last glacial maximum (LGM) and (iii) long-distance dispersal (LDD) events, on the genetic gradients (detected by principal component analysis) of the entire continent, North America and South America. The specific simulation of North and South America showed that genetic gradients are usually orthogonal to the direction of range expansions-either expansions from Bering or posterior re-expansions to recolonize northern regions after ice sheets melting-and we suggest that they result from allele surfing processes. Conversely, our results on the entire continent show a northwest-southeast gradient obtained with any scenario, which we interpreted as a consequence of isolation by distance along the long length of the continent. These findings suggest that distinct genetic gradients can be detected at different regions of the Americas and that subcontinent regions present gradients more sensible to evolutionary and environmental factors (such as LDD and the LGM) than the whole continent.
Analyses of human evolution are fundamental to understand the current gradients of human diversity. In this concern, genetic samples collected from current populations together with archaeological data are the most important resources to study human evolution. However, they are often insufficient to properly evaluate a variety of evolutionary scenarios, leading to continuous debates and discussions. A commonly applied strategy consists of the use of computer simulations based on, as realistic as possible, evolutionary models, to evaluate alternative evolutionary scenarios through statistical correlations with the real data. Computer simulations can also be applied to estimate evolutionary parameters or to study the role of each parameter on the evolutionary process. Here we review the mainly used methods and evolutionary frameworks to perform realistic spatially explicit computer simulations of human evolution. Although we focus on human evolution, most of the methods and software we describe can also be used to study other species. We also describe the importance of considering spatially explicit models to better mimic human evolutionary scenarios based on a variety of phenomena such as range expansions, range shifts, range contractions, sex-biased dispersal, long-distance dispersal or admixtures of populations. We finally discuss future implementations to improve current spatially explicit simulations and their derived applications in human evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.