Hypercoagulable state is linked to cancer progression; however, the precise role of the coagulation cascade is poorly described. Herein, we examined the contribution of a hypercoagulative state through the administration of intravenous Coagulation Factor Xa (FXa), on the growth of solid human tumors and the experimental metastasis of the B16F10 melanoma in mouse models. FXa increased solid tumor volume and lung, liver, kidney and lymph node metastasis of tail-vein injected B16F10 cells. Concentrating on the metastasis model, upon coadministration of the anticoagulant Dalteparin, lung metastasis was significantly reduced, and no metastasis was observed in other organs. FXa did not directly alter proliferation, migration or invasion of cancer cells in vitro. Alternatively, FXa upon endothelial cells promoted cytoskeleton contraction, disrupted membrane VE-Cadherin pattern, heightened endothelial-hyperpermeability, increased inflammatory adhesion molecules and enhanced B16F10 adhesion under flow conditions. Microarray analysis of endothelial cells treated with FXa demonstrated elevated expression of inflammatory transcripts. Accordingly, FXa treatment increased immune cell infiltration in mouse lungs, an effect reduced by dalteparin. Taken together, our results suggest that FXa increases B16F10 metastasis via endothelial cell activation and enhanced cancer cell-endothelium adhesion advocating that the coagulation system is not merely a bystander in the process of cancer metastasis.
Tamoxifen (TAM), a selective oestrogen receptor modulator, is one of the most used treatments in oestrogen receptor-positive (ER+) early and metastatic breast cancer (BC) patients. The response to TAM has a high degree of inter-individual variability. This is mainly due to genetic variants in CYP2D6 gene, as well as other genes encoding proteins involved in the TAM pharmacokinetic and/or pharmacodynamic. Therefore, prediction of the TAM response using these genetic factors together with other non-genetic variables may be relevant to improve breast cancer treatment. Thus, in this work, we used genetic polymorphisms and clinical variables for TAM response modelling. One hundred sixty-two ER + BC patients with 2 years of TAM treatment were retrospectively recruited, and the genetic polymorphisms CYP2D6*4, CYP3A4*1B (CYP3A4*1.001), CYP3A5*3, UGT2B7*2, UGT2B15*2, SULT1A1*2, and ESRA V364E were analyzed by PCR-RFLP. Concomitantly, the therapeutic response was obtained from clinical records for association with genotypes using univariate and multivariate biostatistical models. Our results show that UGT2B15*1/*2 genotype protects against relapse (OR = 0.09; p = 0.02), CYP3A5*3/*3 genotype avoids endometrial hyperplasia (OR = 0.07; p = 0.01), SULT1A1*1/*2 genotype avoids vaginal bleeding (OR = 0.09; p = 0.03) and ESRA 364E/364E genotype increases the probability of vaginal bleeding (OR = 5.68; p = 0.02). Logistic regression models, including genomic and non-genomic variables, allowed us to obtain preliminary predictive models to explain relapse (p = 0.010), endometrial hyperplasia (p = 0.002) and vaginal bleeding (p = 0.014). Our results suggest that the response to TAM treatment in ER + BC patients might be associated with the presence of the studied genetic variants in UGT2B15, CYP3A5, SULT1A1 and ESRA genes. After clinical validation protocols, these models might be used to help to predict a percentage of BC relapse and adverse reactions, improving the individual response to TAM-based treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.