Lithium iron phosphate (LiFePO4, LFP) is the most promising cathode material for use in safe electric vehicles (EVs), due to its long cycle stability, low cost, and low toxicity, but it suffers from low conductivity and ion diffusion. In this work, we present a simple method to obtain LFP/carbon (LFP/C) composites with different types of NC: cellulose nanocrystal (CNC) and cellulose nanofiber (CNF). Microwave-assisted hydrothermal synthesis was used to obtain LFP with nanocellulose inside the vessel, and the final LFP/C composite was achieved by heating the mixture under a N2 atmosphere. The resulting LFP/C indicated that the NC in the reaction medium not only acts as the reducing agent that aqueous iron solutions need (avoiding the use of other chemicals), but also as a stabiliser of the nanoparticles produced in the hydrothermal synthesis, obtaining fewer agglomerated particles compared to synthesis without NC. The sample with the best coating—and, therefore, the best electrochemical response—was the sample with 12.6% carbon derived from CNF in the composite instead of CNC, due to its homogeneous coating. The utilisation of CNF in the reaction medium could be a promising method to obtain LFP/C in a simple, rapid, and low-cost way, avoiding the waste of unnecessary chemicals.
In this work, we describe the fabrication of a transparent gold electrode based on nanocellulose. The electrode was prepared via electron beam evaporation of gold onto nanocellulose films previously spread over a glass slip. Electrodes with different thickness of Au was fabricated, and the material's optical, morphological and electrical properties were assessed. Finally, as a proof of concept, a possible application of this electrode in hydrogen peroxide sensing was performed. The results show that a thin layer of gold on a nanocellulose translucid film allows obtaining a conductive transparent surface that could be used to design a transparent electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.