H. taltalense (Phil.) Johnst. (Heliotropiaceae) is an endemic species of the northern coast of Chile that produces a resinous exudate that covers its foliar surface and stems. Its chemical composition was analyzed for the first time, and two aromatic geranyl derivatives: filifolinol and filifolinyl senecionate and three flavonoids – naringenin, 3-O-methylgalangin and 7-O-methyleriodictiol – were isolated. The antioxidant activity of the flavonoids and the resinous exudates was carried out by measuring the 1,1-diphenyl-2-picrylhydrazyl (DPPH) bleaching effect in ethanolic solution and in sodium dodecyl sulfate (SDS) micelles. The influence of the reaction medium was analyzed. The initial velocity reactions for the pure compounds and for the extract were higher in SDS media than in ethanolic solution. The velocity of reaction observed was interpreted in terms of the reaction medium environment in the micelle.
Heliotropium glutinosum Phil.(Heliotropiceae) is a resinous bush that grows at a height of 2000 m in Chañaral, Chile. From the resinous exudates of Heliotropium glutinosum Phil. a new aromatic geranyl derivative: 4-methoxy-3-[(2)-7'-methyl-3'-hydroxymethyl-2',6'-octadienyl] phenol (1) and three flavonoids: 5,3'-dihydroxy-7,4'-dimethoxyflavanone (2), 5,4'-dihydroxy-7-methoxyflavanone (3) and 4'-acetyl-5-hydroxy -7-methoxyflavanone (4) were isolated and their structures were determined. Their antioxidant activity were evaluated using the bleaching of ABTS and DPPH derived cation radical methods and expressed in terms of FRE (fast reacting equivalents) and TRE (total reacting equivalents), where FRE is a good measure of the quick protection of a given compound against oxidants and TRE measures the degree of long-term protection of the antioxidant, or how effective it is against a strong oxidative stress.
The bonding properties of phosphazenes and spirocyclophosphazenes containing tris-2,2'-dioxybiphenyl groups and their derivatives were investigated by means of different computational techniques. Electronic delocalization and phosphazene-ligand bonding were studied in terms of natural bond orbitals (NBOs) and energy decomposition (EDA) analysis in combination with the natural orbital for chemical valence (NOCV), which showed the dependency of the charge transfer with the electron delocalization. TD-DFT calculations were employed to study the absorption profile of the studied molecules and to contrast the redshift and change in intensities of the λ. An assessment of second-order stabilization energies, ΔE, within the NBO analysis revealed clear differences between the cyclic-phosphazene arrays. The EDA-NOCV showed that the ligand-phosphazene charge transfer is stronger in phosphazene with amine substituents (4c), which is due to the donor character of the substituent over the phenyl ring. The NBO analysis confirmed either the inflow or outflow of charge due to the influence of the electron donor or electron withdrawing groups.
A Born–Haber thermodynamic cycle was used to determine the redox potential in a series of rhenium(iii) clusters theoretical analysis at DFT level was considered to estimate the free energy of the reversible process ReIII6/ReIII5ReIV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.