Marine ammonia oxidizers that oxidize ammonium to nitrite are abundant in polar waters, especially during the winter in the deeper mixed-layer of West Antarctic Peninsula (WAP) waters. However, the activity and abundance of ammonia-oxidizers during the summer in surface coastal Antarctic waters remain unclear. In this study, the ammonia-oxidation rates, abundance and identity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) were evaluated in the marine surface layer (to 30 m depth) in Chile Bay (Greenwich Island, WAP) over three consecutive late-summer periods (2017, 2018, and 2019). Ammonia-oxidation rates of 68.31 nmol N L−1 day−1 (2018) and 37.28 nmol N L−1 day−1 (2019) were detected from illuminated 2 m seawater incubations. However, high ammonia-oxidation rates between 267.75 and 109.38 nmol N L−1 day−1 were obtained under the dark condition at 30 m in 2018 and 2019, respectively. During the late-summer sampling periods both stratifying and mixing events occurring in the water column over short timescales (February–March). Metagenomic analysis of seven nitrogen cycle modules revealed the presence of ammonia-oxidizers, such as the Archaea Nitrosopumilus and the Bacteria Nitrosomonas and Nitrosospira, with AOA often being more abundant than AOB. However, quantification of specific amoA gene transcripts showed number of AOB being two orders of magnitude higher than AOA, with Nitrosomonas representing the most transcriptionally active AOB in the surface waters. Additionally, Candidatus Nitrosopelagicus and Nitrosopumilus, phylogenetically related to surface members of the NP-ε and NP-γ clades respectively, were the predominant AOA. Our findings expand the known distribution of ammonium-oxidizers to the marine surface layer, exposing their potential ecological role in supporting the marine Antarctic system during the productive summer periods.
In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen, and nutrient concentrations to characterize the coastal (71°–78°W) and an oceanic (82°–98°W) water masses (SAAW—Subantarctic Surface Water; STW—Subtropical Water; ESSW—Equatorial Subsurface water; AAIW—Antarctic Intermediate Water; PDW—Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW‐STW, SAAW‐ESSW, and ESSW‐AAIW. δ13CDIC signatures can be used to differentiate between STW‐ESSW (oceanic section), SAAW‐ESSW, ESSW‐AAIW, and AAIW‐PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1,000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present‐day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
In this study, in situ, real-time and high-resolution vertical measurements of dissolved greenhouse gases (GHGs) such as nitrous oxide (N 2 O) and methane (CH 4 ) and nutrients are reported for the eastern South Pacific (ESP); a region with marked zonal gradients, ranging from highly productive and suboxic conditions in coastal upwelling systems to oligotrophic and oxygenated conditions in the subtropical gyre. Four high-resolution vertical profiles for gases (N 2 O and CH 4 ) and nutrients (NO − 3 and PO 3− 4 ) were measured using a Pumped Profiling System (PPS), connected with a liquid degassing membrane coupled with Cavity Ring-Down Spectroscopy (CRDS) and a nutrient auto-analyzer, respectively. The membrane-CRDS system maintains a linear response over a wide range of gas concentrations, detecting N 2 O and CH 4 levels as low as 0.0774 ± 0.0004 and 0.1011 ± 0.001 ppm, respectively. Continuous profiles for gases and nutrients were similar to those reported throughout the ESP, with pronounced N 2 O and CH 4 peaks at the upper oxycline and at the base of the euphotic zone and pycnocline, respectively, in the coastal zone; but almost constant depth profiles in the subtropical gyre. Additionally, other vertical gas and nutrient structures were observed using continuous sampling, which would not have been detected by discrete sampling. Our results demonstrate that continuous measurements can be a potentially useful methodology for future GHGs cycle studies.
Methane (CH 4 ) is the most important greenhouse gas after CO 2 , globally accounting for ∼17% of the global radiative forcing of all greenhouse gases (IPCC, 2013). Also, it is emitted by both natural and anthropogenic sources. Natural sources include wetlands, gas hydrates, termites, wildfires, as well as fresh and oceanic waters. In the ocean, CH 4 is actively recycled, as microbial communities drive various metabolic pathways, leading to the production and/or consumption of CH 4 . Additionally, different physical processes lead to gas transport and exchange across the air-sea interface (Sarmiento & Gruber, 2006).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.