A Virtual Reality application was developed to be used as an immersive virtual learning strategy for Oculus Rift S Virtual Reality glasses and through Leap Motion Controller™ infrared sensors, focused on students of the Automotive Systems Engineering academic program, as a practical teaching-learning tool in the context of Education 4.0 and the pandemic caused by COVID-19 that has kept schools closed since March 2020. The technological pillars of Industry 4.0 were used to profile students so that they can meet the demands of their professional performance at the industrial level. Virtual Reality (VR) plays a very important role for the production-engineering sector in areas such as design and autonomous cars, as well as in training and driving courses. The VR application provides the student with a more immersive and interactive experience, supported by 3D models of both the main parts that make up the four-stroke combustion engine and the mechanical workshop scenario; it allows the student to manipulate the main parts of the four-stroke combustion engine through the Oculus Rift S controls and the Leap Motion Controller™ infrared sensors, and relate them to the operation of the engine, through the animation of its operation and the additional information shown for each part that makes it up in the application.
The mineralogy and thermal properties of two kaolin clay samples from Agua Blanca (Hidalgo-México) were determined by XRD, SEM-EDS, TGA-DSC techniques. Kaolin clay A contains a higher Al2O3 and lower impurities (K2O, TiO2, Fe2O3) amount than kaolin clay B, while the SiO2 amount is similar for both kaolin clays. A theoretical approach was carried out by a thermodynamic analysis considering the chemical composition of both kaolin clay samples with the FactSage 7.3 software. Stability phase diagrams were obtained to different K2O content from 0.1 to 3 wt % and temperatures in the range from 600 to 1600°C based on the chemical composition of the kaolin clay samples. The main mineralogical compounds predicted are andalusite (Al2O3•SiO2), K-Potash feldspar (K2O•Al2O3•6SiO2), and the SiO2 polymorphs (quartz, tridymite, and cristobalite) with small amounts of ferricpseudobrookite (Fe2O5Ti), and rutile (TiO2). As K2O content is increased, the amounts of mullite and tridymite decrease meanwhile the potash feldspar is increased at high temperatures. A liquid phase is formed at around 1350 and 1400°C for the kaolin clay samples A and B, respectively. The viscosity of the melt is increased for the evaluated K2O additions to 1400, 1500, and 1600°C.
Influence of nIckel addItIon and caStIng ModuluS on the propertIeS of hypo-eutectIc ductIle caSt Iron e. colin-garcía a , a. cruz-ramírez a* , g. reyes-castellanos a , J.a. romero-Serrano a , r.g. Sánchez-alvarado a , M. hernández-chávez b a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.