The current research has produced engineering plastics composite for automotive applications using waste recycled plastic recycled polyethylene terephthalate (RPET) bottles as the matrix and compounded with chemically modified natural kenaf fibers in comparison with virgin polyethylene terephthalate (PET) composites under the same processing conditions. Kenaf fibers were surface modified by alkali and epoxy coating treatment methods. The waste RPET bottles which were mechanically recycled were pulverized using a 5 mm mesh size aperture into flakes and melt‐mixed with 10 wt% of short kenaf fibers in a twin‐screw extruder and compression‐molded at 240°С optimized temperature. Mechanical and thermal analyses were performed on both RPET, virgin PET (VPET), and their constituent kenaf composites. Scanning electron microscopy (SEM) was carried out to assess the composite's morphological characteristics. The results show that both treated (TKF/RPET and TKF/VPET) composites gave higher mechanical properties compared to untreated (KF/RPET and KF/VPET) composites. RPET and its constituent composites show higher impact properties than VPET composites. However, the tensile and flexural strength of VPET composites was higher than that of recycled RPET composites. RPET and VPET showed melting peak temperatures of 252.9°C and 245.8°C respectively. Both treated TKF/RPET and TKF/VPET composites were more thermally stable and decomposed at higher temperatures compared to the untreated composites. The SEM results for both treated composites showed a strong fiber/matrix adhesion with no clear evidence of fiber degradation as compared to untreated composites. It can be concluded that RPET possessed similar thermal properties compared to its virgin counterpart and can serve as a substitute for virgin PET in the composite formulation.
The purpose of this research is to develop new polymeric composite materials from the flamboyant pod (Delonix Regia), an agricultural waste, with polyester as a matrix and to investigate their properties and application areas.The flamboyant pod particles of 75 μm were incorporated into the polyester resin with different loadings of 10, 20, 30, 40, and 50 wt%. The influence of the pod particles on mechanical and morphological properties was determined and investigated. The results showed that 10 wt.% gave the best results for tensile, impact, and flexural properties with values of 40.6 MPa, 4.6 kJ/mm 2 , and 86.82 MPa respectively, the values are however lower than the unfilled. The hardness properties increased with increasing filler loadings with values from 23.8 HV -32.7 HV for 10 wt% -50 wt% respectively. The micrographs of the fractured impact samples confirmed the 10 wt% filler loading having the best properties with homogenous dispersion of the flamboyant pod particles (FPP) within the polyester resin. It can be concluded that lightweight composites with reasonable properties have been developed at 10 wt % loading which is suitable for non-load bearing and indoor applications in the automotive and building industries as partition tops, walls, and boards owing to their saturation in water after 30 days of immersion. The flamboyant pod material can be further explored for added values with tougher polymer matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.