To improve the accuracy and practicality of the intelligent color-matching application of wood dyeing technology, Fraxinus mandshurica veneer was selected as the dyeing material. First, based on the Friele model and Stearns–Noechel model, the model parameters were cyclically assigned to calculate the optimal fixed parameter values and predictions. Then, particle swarm algorithm was used to optimize two algorithm models, the obtained reflectance curve was fit, and the color differences were calculated according to the human eye-based CIEDE2000 color difference evaluation standard formula. Last, the two formulas to predict the color difference and spectral reflectance were compared. First, the two optimization algorithms were compared according to the size of the fitted color difference value, and then, the most accurate optimization algorithm was selected. When the model parameters were fixed, the average fitted color difference was 0.8202. After optimizing the Friele model, the average fitted color difference was 0.7287, and after optimizing the Stearns–Noechel model, the average fitted color difference was 0.6482. It was concluded that the improved Stearns–Noechel model based on particle swarm method was more accurate than the Friele model for wood color matching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.