Polyphenols are inversely associated with the incidence of chronic diseases, but therapeutic use is limited by poor stability and bioaccessibility. Encapsulation has been shown to overcome some of these limitations. A selection of polyphenols (catechin, gallic acid, and epigallocatechin gallate) and their combinations were encapsulated in beta-cyclodextrin (βCD). Encapsulation was characterized and the thermal and storage stability was evaluated using the 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. The samples were then subjected to in vitro digestion using a simple digestion (SD) model (gastric and duodenal phases) and a more complex digestion (CD) model (oral, gastric, and duodenal phases). Thereafter, the chemical (oxygen radical absorbance capacity assay) and cellular (dichlorofluorescein diacetate assay in Caco-2 cells) antioxidant and antiglycation (advanced glycation end-products assay) activities were determined. Inclusion complexes formed at a 1:1 molar ratio with a high encapsulation yield and efficiency. Encapsulation altered the morphology of the samples, increased the thermal stability of some and the storage stability of all samples. Encapsulation maintained the antioxidant activity of all samples and significantly improved the antiglycation and cellular antioxidant activities of some polyphenols following SD. In conclusion, the formed inclusion complexes of βCD with polyphenols had greater storage stability, without altering the beneficial cellular effects of the polyphenols.
Interethnic and interindividual variability in in vivo cytochrome P450 (CYP450)-dependent metabolism and altered drug absorption via expressed transport channels such as P-glycoprotein (P-gp) contribute to the adverse drug reactions, drug–drug interaction and therapeutic failure seen in clinical practice. A cost-effective phenotyping approach could be advantageous in providing real-time information on in vivo phenotypes to assist clinicians with individualized drug therapy, especially in resource-constrained countries such as South Africa. A number of phenotyping cocktails have been developed and the aim of this study was to critically assess the feasibility of their use in a South African context. A literature search on library databases (including AccessMedicine, BMJ, ClinicalKey, MEDLINE (Ovid), PubMed, Scopus and TOXLINE) was limited to in vivo cocktails used in the human population to phenotype phase I metabolism and/or P-gp transport. The study found that the implementation of phenotyping in clinical practice is currently limited by multiple administration routes, the varying availability of probe drugs, therapeutic doses eliciting side effects, the interaction between probe drugs and extensive sampling procedures. Analytical challenges include complicated sample workup or extraction assays and impractical analytical procedures with low detection limits, analyte sensitivity and specificity. It was concluded that a single time point, non-invasive capillary sampling, combined with a low-dose probe drug cocktail, to simultaneously quantify in vivo drug and metabolite concentrations, would enhance the feasibility and cost-effectiveness of routine phenotyping in clinical practice; however, future research is needed to establish whether the quantitative bioanalysis of drugs in a capillary whole-blood matrix correlates with that of the standard plasma/serum matrixes used as a reference in the current clinical environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.