Blood-borne substances can invade into the extracellular spaces of the brain via endothelial cells in sites without the blood-brain barrier (BBB), and can travel through the interstitial fluid (ISF) of the brain parenchyma adjacent to non-BBB sites. It has been shown that cerebrospinal fluid (CSF) drains directly into the blood via the arachnoid villi and also into lymph nodes via the subarachnoid spaces of the brain, while ISF drains into the cervical lymph nodes through perivascular drainage pathways. In addition, the glymphatic pathway of fluids, characterized by para-arterial pathways, aquaporin4-dependent passage through astroglial cytoplasm, interstitial spaces, and paravenous routes, has been established. Meningeal lymphatic vessels along the superior sagittal sinus were very recently discovered. It is known that, in mice, blood-borne substances can be transferred to areas with intact BBB function, such as the medial regions of the hippocampus, presumably through leaky vessels in non-BBB sites. In the present paper, we review the clearance mechanisms of interstitial substances, such as amyloid-β peptides, as well as summarize models of BBB deterioration in response to different types of insults, including acute ischemia followed by reperfusion, hypertension, and chronic hypoperfusion. Lastly, we discuss the relationship between perivascular clearance and brain disorders.
New findings on flow or drainage pathways of brain interstitial fluid and cerebrospinal fluid have been made. The interstitial fluid flow has an effect on the passage of blood-borne substances in the brain parenchyma, especially in areas near blood-brain barrier (BBB)-free regions. Actually, blood-borne substances can be transferred in areas with intact BBB function, such as the hippocampus, the corpus callosum, periventricular areas, and medial portions of the amygdala, presumably through leaky vessels in the subfornical organs or the choroid plexus. Increasing evidence indicates that dysfunction of the BBB function may play a significant role in the pathogenesis of vascular dementia. Accordingly, we have examined which insults seen in patients suffering from vascular dementia have an effect on the BBB using experimental animal models exhibiting some phenotypes of vascular dementia. The BBB in the hippocampus was clearly deteriorated in Mongolian gerbils exposed to acute ischemia followed by reperfusion and also in stroke-prone spontaneously hypertensive rats (SHRSP) showing hypertension. The BBB in the corpus callosum was clearly deteriorated in Wistar rats with permanent ligation of the bilateral common carotid arteries showing chronic hypoperfusion. The BBB in the hippocampus and the olfactory bulb was mildly deteriorated in aged senescence accelerated prone mice (SAMP8) showing cognitive dysfunction. The BBB in the hippocampus was mildly deteriorated in aged animals with hydrocephalus. Mild endothelial damage was seen in hyperglycemic db/db mice. In addition, mRNA expression of osteopontin, matrix metalloproteinase-13 (MMP-13), and CD36 was increased in vessels showing BBB damage in hypertensive SHRSP. As osteopontin, MMP-13 and CD36 are known to be related to brain injury and amyloid β accumulation or clearance, BBB damage followed by increased gene expression of these molecules not only contributes to the pathogenesis of vascular dementia, but also bridges the gap between vascular dementia and Alzheimer's disease.
High fructose intake is known to be associated with increased plasma triglyceride concentration, impaired glucose tolerance, insulin resistance, and high blood pressure. In addition, excess fructose intake is also thought to be a risk factor for dementia. Previous immunohistochemical studies have shown the presence of glucose transporter 5 (GLUT5), a major transporter of fructose, in the epithelial cells of the choroid plexus and ependymal cells in the brains of humans, rats, and mice, while GLUT2, a minor transporter of fructose, was localized in the ependymal cells of rat brain. In this study, immunoreactivity for the fructose transporter GLUT8 was observed in the cytoplasm of the epithelial cells in the choroid plexus and in the ependymal cells of the brains of humans and mice. These structures were not immunoreactive for GLUT7, GLUT11, and GLUT12. Our findings support the hypothesis of the transport of intravascular fructose through the epithelial cells of the choroid plexus and the ependymal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.