Chemical modification of gelatin using epigallocatechin gallate (EGCG) promotes bone formation in vivo. However, further improvements are required to increase the mechanical strength and bone-forming ability of fabricated EGCG-modified gelatin sponges (EGCG-GS) for practical applications in regenerative therapy. In the present study, we investigated whether vacuum heating-induced dehydrothermal cross-linking of EGCG-GS enhances bone formation in critical-sized rat calvarial defects. The bone-forming ability of vacuum-heated EGCG-GS (vhEGCG-GS) and other sponges was evaluated by micro-computed tomography and histological staining. The degradation of sponges was assessed using protein assays, and cell morphology and proliferation were verified by scanning electron microscopy and immunostaining using osteoblastic UMR106 cells in vitro. Four weeks after the implantation of sponges, greater bone formation was detected for vhEGCG-GS than for EGCG-GS or vacuum-heated gelatin sponges (dehydrothermal cross-linked sponges without EGCG). In vitro experiments revealed that the relatively low degradability of vhEGCG-GS supports cell attachment, proliferation, and cell–cell communication on the matrix. These findings suggest that vacuum heating enhanced the bone forming ability of EGCG-GS, possibly via the dehydrothermal cross-linking of EGCG-GS, which provides a scaffold for cells, and by maintaining the pharmacological effect of EGCG.
The entry of blood-borne macromolecular substances into the brain parenchyma from cerebral vessels is blocked by the blood–brain barrier (BBB) function. Accordingly, increased permeability of the vessels induced by insult noted in patients suffering from vascular dementia likely contributes to the cognitive impairment. On the other hand, blood-borne substances can enter extracellular spaces of the brain via endothelial cells at specific sites without the BBB, and can move to brain parenchyma, such as the hippocampus and periventricular areas, adjacent to specific sites, indicating the contribution of increased permeability of vessels in the specific sites to brain function. It is necessary to consider influx and efflux of interstitial fluid (ISF) and cerebrospinal fluid (CSF) in considering effects of brain transfer of intravascular substances on brain function. Two pathways of ISF and CSF are recently being established. One is the intramural peri-arterial drainage (IPAD) pathway of ISF. The other is the glymphatic system of CSF. Dysfunction of the two pathways could also contribute to brain dysfunction. We review the effects of several kinds of insult on vascular permeability and the failure of fluid clearance on the brain function.
The choroid plexus plays a central role in the regulation of the microenvironment of the central nervous system by secreting the majority of the cerebrospinal fluid and controlling its composition, despite that it only represents approximately 1% of the total brain weight. In addition to a variety of transporter and channel proteins for solutes and water, the choroid plexus epithelial cells are equipped with glucose, fructose, and urate transporters that are used as energy sources or antioxidative neuroprotective substrates. This review focuses on the recent advances in the understanding of the transporters of the SLC2A and SLC5A families (GLUT1, SGLT2, GLUT5, GLUT8, and GLUT9), as well as on the urate-transporting URAT1 and BCRP/ABCG2, which are expressed in choroid plexus epithelial cells. The glucose, fructose, and urate transporters repertoire in the choroid plexus epithelium share similar features with the renal proximal tubular epithelium, although some of these transporters exhibit inversely polarized submembrane localization. Since choroid plexus epithelial cells have high energy demands for proper functioning, a decline in the expression and function of these transporters can contribute to the process of age-associated brain impairment and pathophysiology of neurodegenerative diseases.
SUMMARY:One concern about rotavirus vaccines is its possible association with intussusception. Thus, it is necessary to determine the baseline incidence for intussusception in the first year of life in places where rotavirus vaccines are introduced. However, few safety data exist for the period at which the first dose of Rotarix and RotaTeq are allowed to administer in Japan. The first dose of Rotarix is scheduled to administer at 6-20 weeks of age and that of RotaTeq is scheduled to administer at 6-24 weeks of age; the upper limits for these vaccines is later than the upper limit recommended by the World Health Organization by 5 and 9 weeks, respectively. We performed a retrospective cross-sectional study by reviewing medical charts of all hospitals that provided pediatric beds in Akita Prefecture, Japan, and identifying the cases of intussusception that met the Brighton criteria level 1 in these hospitals between January 2001 and December 2010. During this 10-year period, 122 children younger than 1 year of age were diagnosed with intussusception. The incidence of intussusception was estimated at 158 per 100,000 person-years among children younger than 1 year (95z confidence interval, 131-188), 10 per 100,000 person-years for children aged 0-2 months, 165 for children aged 3-5 months, and 300 for children aged 6-8 months. This rapid and substantial increase in the incidence of intussusception during the first year of life should be considered when formulating the immunization schedule for administering rotavirus vaccines in Japan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.