Users have begun downloading an increasingly large number of mobile phone applications in response to advancements in handsets and wireless networks. The increased number of applications results in a greater chance of installing Trojans and similar malware. In this paper, we propose the Kirin security service for Android, which performs lightweight certification of applications to mitigate malware at install time. Kirin certification uses security rules, which are templates designed to conservatively match undesirable properties in security configuration bundled with applications. We use a variant of security requirements engineering techniques to perform an in-depth security analysis of Android to produce a set of rules that match malware characteristics. In a sample of 311 of the most popular applications downloaded from the official Android Market, Kirin and our rules found 5 applications that implement dangerous functionality and therefore should be installed with extreme caution. Upon close inspection, another five applications asserted dangerous rights, but were within the scope of reasonable functional needs. These results indicate that security configuration bundled with Android applications provides practical means of detecting malware.
Abstract-Smartphones are now ubiquitous. However, the security requirements of these relatively new systems and the applications they support are still being understood. As a result, the security infrastructure available in current smartphone operating systems is largely underdeveloped. In this paper, we consider the security requirements of smartphone applications and augment the existing Android operating system with a framework to meet them. We present Secure Application INTeraction (Saint), a modified infrastructure that governs install-time permission assignment and their run-time use as dictated by application provider policy. An in-depth description of the semantics of application policy is presented. The architecture and technical detail of Saint is given, and areas for extension, optimization, and improvement explored. As we show through concrete example, Saint provides necessary utility for applications to assert and control the security decisions on the platform.
Abstract-Smartphones are now ubiquitous. However, the security requirements of these relatively new systems and the applications they support are still being understood. As a result, the security infrastructure available in current smartphone operating systems is largely underdeveloped. In this paper, we consider the security requirements of smartphone applications and augment the existing Android operating system with a framework to meet them. We present Secure Application INTeraction (Saint), a modified infrastructure that governs install-time permission assignment and their run-time use as dictated by application provider policy. An in-depth description of the semantics of application policy is presented. The architecture and technical detail of Saint is given, and areas for extension, optimization, and improvement explored. As we show through concrete example, Saint provides necessary utility for applications to assert and control the security decisions on the platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.