With the widespread use of radio-frequency devices, it is increasingly important to understand the biological effects of the associated electromagnetic fields. Thus, we investigated the effects of radio-frequency electromagnetic fields (RF-EMF) on T cell responses during development due to the lack of science-based evidence for RF-EMF effects on developmental immune systems. Sprague Dawley (SD) rats were exposed to 2.14-GHz wideband code division multiple-access (W-CDMA) RF signals at a whole-body specific absorption rate (SAR) of 0.2 W/kg. Exposures were performed for a total of 9 weeks spanning in utero development, lactation and the juvenile period. Rats were continuously exposed to RF-EMF for 20 h/day, 7 days/week. Comparisons of control and exposed rats using flow cytometry revealed no changes in the numbers of CD4/CD8 T cells, activated T cells or regulatory T cells among peripheral blood cells, splenocytes and thymocytes. Expression levels of 16 genes that regulate the immunological Th1/Th2 paradigm were analyzed using real-time PCR in the spleen and thymus tissues of control and RF-EMF–exposed rats. Although only the Il5 gene was significantly regulated in spleen tissues, Il4, Il5 and Il23a genes were significantly upregulated in thymus tissues following exposure to RF-EMF. However, ELISAs showed no changes in serum IL-4 protein concentrations. These data indicate no adverse effects of long-term RF-EMF exposure on immune-like T cell populations, T cell activation, or Th1/Th2 balance in developing rats, although significant transcriptional effects were observed.
To the best of our knowledge, this is the first case report of a successful pregnancy and delivery of a healthy infant fathered by an infertile chimera (46, XX/46, XY) following ICSI using frozen testicular sperm.
-We investigated the thermal effects of radiofrequency electromagnetic fields (RFEMFs) on the variation in core temperature and gene expression of some stress markers in rats. SpragueDawley rats were exposed to 2.14 GHz wideband code division multiple access (W-CDMA) RF signals at a whole-body averaged specific absorption rate (WBA-SAR) of 4 W/kg, which causes behavioral disruption in laboratory animals, and 0.4 W/kg, which is the limit for the occupational exposure set by the International Commission on Non-Ionizing Radiation Protection guideline. It is important to understand the possible in vivo effects derived from RF-EMF exposures at these intensities. Because of inadequate data on real-time core temperature analyses using free-moving animal and the association between stress and thermal effects of RF-EMF exposure, we analyzed the core body temperature under nonanesthetic condition during RF-EMF exposure. The results revealed that the core temperature increased by approximately 1.5°C compared with the baseline and reached a plateau till the end of RF-EMF exposure. Furthermore, we analyzed the gene expression of heat-shock proteins (Hsp) and heat-shock transcription factors (Hsf) family after RF-EMF exposure. At WBA-SAR of 4 W/kg, some Hsp and Hsf gene expression levels were significantly upregulated in the cerebral cortex and cerebellum following exposure for 6 hr/day but were not upregulated after exposure for 3 hr/day. On the other hand, there was no significant change in the core temperature and gene expression at WBA-SAR of 0.4 W/kg. Thus, 2.14-GHz RF-EMF exposure at WBA-SAR of 4 W/kg induced increases in the core temperature and upregulation of some stress markers, particularly in the cerebellum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.