Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are rare autosomal recessive disorders associated with a defect in the nucleotide excision repair (NER) pathway required for the removal of DNA damage induced by UV light and distorting chemical adducts. Although progressive neurological dysfunction is one of the hallmarks of CS and of some groups of XP patients, the causative mechanisms are largely unknown. Here we show that mice lacking both the XPA (XP-group A) and CSB (CS-group B) genes in contrast to the single mutants display severe growth retardation, ataxia, and motor dysfunction during early postnatal development. Their cerebella are hypoplastic and showed impaired foliation and stunted Purkinje cell dendrites. Reduced neurogenesis and increased apoptotic cell death occur in the cerebellar external granular layer. These findings suggest that XPA and CSB have additive roles in the mouse nervous system and support a crucial role for these genes in normal brain development.
Telmisartan, a selective angiotensin II receptor antagonist, is primarily excreted via hepatobiliary transport. The predominant contribution of organic anion transporting polypeptide (OATP) 1B3 in its hepatic uptake of telmisartan has been demonstrated by in vitro transport studies. In the present study, a quantitative positron emission tomography (PET) methodology was developed for in vivo kinetic assessment of hepatobiliary transport of telmisartan. Serial abdominal PET scans were performed in rats following intravenous administration of [(11)C]telmisartan as a radiotracer. PET scans revealed that [(11)C]telmisartan was localized primarily in the liver and some of the radioactivity moved to the intestine, which corresponds to biliary excretion. Radiometabolite analysis by radiometric HPLC showed that [(11)C]telmisartan was converted to its acylglucuronide, which was mainly detected in bile, but little in plasma and liver. Integration plot analysis revealed that [(11)C]telmisartan was taken up into the liver as rapidly as the hepatic blood flow rate, and the radiometabolite was subsequently excreted into the bile. When rifampicin, a typical Oatp inhibitor, was coadministered with [(11)C]telmisartan in rats, hepatic uptake clearance of [(11)C]telmisartan was significantly decreased, whereas biliary efflux clearance was not changed. Coinjection with unlabeled telmisartan (4 and 10 mg/kg) also decreased hepatic uptake clearance of [(11)C]telmisartan. On the other hand, PET imaging analysis revealed a significant increase of biliary efflux when telmisartan dose was increased to more than 4 mg/kg. These results suggested that the hepatic uptake of [(11)C]telmisartan mainly consists of a saturable process mediated by Oatps in rats, according to noninvasive real-time measurement of tissue radioactivity with the use of PET. The present study with rats is expected to provide the feasibility of PET imaging study to quantitatively estimate OATP1B3 function in humans.
We have identified a novel endoplasmic reticulum (ER)-resident protein, named "calumin", which is expressed in various tissues. This protein has a molecular mass of approximately 60 kDa and is composed of an ER-luminal domain rich in acidic residues, a single transmembrane segment, and a large cytoplasmic domain. Biochemical experiments demonstrated that the amino-terminal luminal domain is capable of binding Ca2+ with a high capacity and moderate affinity. In embryonic fibroblasts derived from calumin-knockout mice exhibiting embryonic and neonatal lethality, fluorometric Ca2+ imaging detected insufficient Ca2+ contents in intracellular stores and attenuated store-operated Ca2+ entry. Moreover, the mutant fibroblasts were highly sensitive to cell death induced by ER stress. These observations suggest that calumin plays an essential role in ER Ca2+ handling and is also implicated in signaling from the ER, which is closely associated with cell-fate decision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.