CD4 ؉ CD25 ؉ Foxp3 ؉ regulatory T cells (Tregs) are potent suppressors of the adaptive immune system, but their effects on innate immune cells are less well known. Here we demonstrate a previously uncharacterized function of Tregs, namely their ability to steer monocyte differentiation toward alternatively activated macrophages (AAM). AAM are cells with strong antiinflammatory potential involved in immune regulation, tissue remodeling, parasite killing, and tumor promotion. We show that, after coculture with Tregs, monocytes/ macrophages display typical features of AAM, including up-regulated expression of CD206 (macrophage mannose receptor) and CD163 (hemoglobin scavenger receptor), an increased production of CCL18, and an enhanced phagocytic capacity. In addition, the monocytes/ macrophages have reduced expression of HLA-DR and a strongly reduced capacity to respond to LPS in terms of proinflammatory mediator production (IL-1, IL-6, IL-8, MIP-1␣, TNF-␣), NFB activation, and tyrosine phosphorylation. Mechanistic studies reveal that CD4 ؉ CD25 ؉ CD127 low Foxp3 ؉ Tregs produce IL-10, IL-4, and IL-13 and that these cytokines are the critical factors involved in the suppression of the proinflammatory cytokine response. In contrast, the Tregmediated induction of CD206 is entirely cytokine-independent, whereas the up-regulation of CD163, CCL18, and phagocytosis are (partly) dependent on IL-10 but not on IL-4/IL-13. Together these data demonstrate a previously unrecognized function of CD4 ؉ CD25 ؉ Foxp3 ؉ Tregs, namely their ability to induce alternative activation of monocytes/macrophages. Moreover, the data suggest that the Tregmediated induction of AAM partly involves a novel, cytokineindependent pathway. alternatively activated macrophages ͉ mannose receptor ͉ phagocytosis ͉ proinflammatory response ͉ interleukin-10
WNT proteins are secreted morphogens that are required for basic developmental processes, such as cell-fate specification, progenitor-cell proliferation and the control of asymmetric cell division, in many different species and organs. In blood and immune cells, WNT signalling controls the proliferation of progenitor cells and might also affect the cell-fate decisions of stem cells. Recent studies indicate that WNT proteins also regulate effector T-cell development, regulatory T-cell activation and dendritic-cell maturation. WNT signalling seems to function as a universal mechanism in leukocytes to establish a pool of undifferentiated cells for further selection, effector-cell maturation and terminal differentiation. WNT signalling is therefore subject to strict molecular control, and dysregulated WNT signalling is implicated in the development of haematological malignancies.
Multipotent stromal cells (MSC) have been shown to possess immunomodulatory capacities and are therefore explored as a novel cellular therapy. One of the mechanisms through which MSC modulate immune responses is by the promotion of regulatory T cell (Treg) formation. In this study, we focused on the cellular interactions and secreted factors that are essential in this process. Using an in vitro culture system, we showed that culture-expanded bone marrow-derived MSC promote the generation of CD41 T cells in human PBMC populations and that these populations are functionally suppressive. Similar results were obtained with MSC-conditioned medium, indicating that this process is dependent on soluble factors secreted by the MSC. Antibody neutralization studies showed that TGF-b1 mediates induction of Tregs. TGF-b1 is constitutively secreted by MSC, suggesting that the MSC-induced generation of Tregs by TGF-b1 was independent of the interaction between MSC and PBMC. Monocyte-depletion studies showed that monocytes are indispensable for MSC-induced Treg formation. MSC promote the survival of monocytes and induce differentiation toward macrophage type 2 cells that express CD206 and CD163 and secrete high levels of IL-10 and CCL-18, which is mediated by as yet unidentified MSC-derived soluble factors. CCL18 proved to be responsible for the observed Treg induction. These data indicate that MSC promote the generation of Tregs. Both the direct pathway through the constitutive production of TGF-b1 and the indirect novel pathway involving the differentiation of monocytes toward CCL18 producing type 2 macrophages are essential for the generation of Tregs induced by MSC.
The suppressive effects of CD4+CD25+ regulatory T cells (Tregs) on T cells have been well documented. Here we investigated whether human CD4+CD25+ Tregs can inhibit the proinflammatory properties of monocytes/macrophages. Monocytes and T cells were isolated from peripheral blood of healthy volunteers by magnetic cell separation and cocultured for 40 h. Monocytes were analyzed directly for cytokine production and phenotypic changes or repurified and used in T-cell stimulation and lipopolysaccharide challenge assays. Coculture with CD4+CD25+ Tregs induced minimal cytokine production in monocytes, whereas coculture with CD4+CD25- T cells resulted in large amounts of proinflammatory (tumor necrosis factor-alpha, interferon-gamma, interleukin-6) and regulatory (interleukin-10) cytokines. Importantly, when these CD4+CD25+ Treg-treated monocytes were repurified after coculture and challenged with lipopolysaccharide, they were severely inhibited in their capacity to produce tumor necrosis factor-alpha and interleukin-6 compared with control-treated monocytes. In addition, monocytes that were precultured with CD4+CD25+ Tregs displayed limited upregulation of human leukocyte antigen class II, CD40 and CD80, and downregulation of CD86 compared with control-treated monocytes. This altered phenotype had functional consequences, as shown by the reduction in T cell-stimulatory capacity of Treg-treated monocytes. Together, these data demonstrate that CD4+CD25+ Tregs can exert direct suppressive effects on monocytes/macrophages, thereby affecting subsequent innate and adaptive immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.