The veins that irrigate leaves during photosynthesis are demonstrated to be strikingly more abundant in flowering plants than in any other vascular plant lineage. Angiosperm vein densities average 8 mm of vein per mm 2 of leaf area and can reach 25 mm mm K2 , whereas such high densities are absent from all other plants, living or extinct. Leaves of non-angiosperms have consistently averaged close to 2 mm mm K2 throughout 380 million years of evolution despite a complex history that has involved four or more independent origins of laminate leaves with many veins and dramatic changes in climate and atmospheric composition. We further demonstrate that the high leaf vein densities unique to the angiosperms enable unparalleled transpiration rates, extending previous work indicating a strong correlation between vein density and assimilation rates. Because vein density is directly measurable in fossils, these correlations provide new access to the physiology of extinct plants and how they may have impacted their environments. First, the high assimilation rates currently confined to the angiosperms among living plants are likely to have been unique throughout evolutionary history. Second, the transpiration-driven recycling of water that is important for bolstering precipitation in modern tropical rainforests might have been significantly less in a world before the angiosperms.
Increasing concentrations of ions flowing through the xylem of plants produce rapid, substantial, and reversible decreases in hydraulic resistance. Changes in hydraulic resistance in response to solution ion concentration, pH, and nonpolar solvents are consistent with this process being mediated by hydrogels. The effect is localized to intervessel bordered pits, suggesting that microchannels in the pit membranes are altered by the swelling and deswelling of pectins, which are known hydrogels. The existence of an ion-mediated response breaks the long-held paradigm of the xylem as a system of inert pipes and suggests a mechanism by which plants may regulate their internal flow regime.
Summary• The hydraulic plumbing of vascular plant leaves varies considerably between major plant groups both in the spatial organization of veins, as well as their anatomical structure.• Five conifers, three ferns and 12 angiosperm trees were selected from tropical and temperate forests to investigate whether the profound differences in foliar morphology of these groups lead to correspondingly profound differences in leaf hydraulic efficiency.• We found that angiosperm leaves spanned a range of leaf hydraulic conductance from 3.9 to 36 mmol m 2 s − 1 MPa − 1 , whereas ferns (5.9 -11.4 mmol m − 2 s − 1 MPa − 1 ) and conifers (1.6 -9.0 mmol m − 2 s − 1 MPa − 1 ) were uniformly less conductive to liquid water. Leaf hydraulic conductance (K leaf ) correlated strongly with stomatal conductance indicating an internal leaf-level regulation of liquid and vapour conductances. Photosynthetic capacity also increased with K leaf , however, it became saturated at values of K leaf over 20 mmol m − 2 s − 1 MPa − 1 .• The data suggest that vessels in the leaves of the angiosperms studied provide them with the flexibility to produce highly conductive leaves with correspondingly high photosynthetic capacities relative to tracheid-bearing species.
A comparison was made of three methods for measuring the leaf lamina hydraulic conductance (K(lamina)) for detached mature leaves of six woody temperate angiosperm species. The high-pressure method, the evaporative flux method and the vacuum pump method involve, respectively, pushing, evaporating and pulling water out of the lamina while determining the flow rate into the petiole and the water potential drop across the leaf. Tests were made of whether the high-pressure method and vacuum pump method measurements of K(lamina) on single leaves were affected by irradiance. In Quercus rubra, the high pressure method was sensitive to irradiance; K(lamina) measured under high irradiance (>1200 micro mol m(-2) s(-1 )photosynthetically active radiation) was 4.6-8.8 times larger than under ambient laboratory lighting (approximately 6 micro mol m(-2) s(-1 )photosynthetically active radiation). By constrast, the vacuum pump method was theoretically expected to be insensitive to irradiance, and this expectation was confirmed in experiments on Hedera helix. When used in the ways recommended here, the three methods produced measurements that agreed typically within 10%. There were significant differences in species' K(lamina); values ranged from 1.24x10(-4) kg s(-1) m(-2) MPa(-1) for Acer saccharum to 2.89x10(-4) kg s(-1) m(-2) MPa(-1) for Vitis labrusca. Accurate, rapid determination of K(lamina) will allow testing of the links between K(lamina), water-use, drought tolerance, and the enormous diversity of leaf form, structure and composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.