Background: Kawasaki disease (KD) is an acute self-limited febrile vasculitis that mainly affects young children. Coronary artery involvement is the most serious complication in children with KD. It is currently the leading cause of acquired cardiac disease in children from developed countries. Literature data indicate a significant role of genetic susceptibility to KD.Objective: The aim of this study was to perform the first Genome-Wide Association Study (GWAS) in a population of Polish children with KD and identify susceptible genes involved in the pathogenesis of KD.Materials and Methods: The blood samples of Kawasaki disease patients (n = 119) were collected between 2016 and 2020, isolated and stored at the Department of Pediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute in Warsaw. The control group was based on Polish donors (n = 6,071) registered as the POPULOUS collection at the Biobank Lab of The Department of Molecular Biophysics in University of Lodz. DNA samples were genotyped for 558,231 Single Nucleotide Polymorphisms (SNPs) using the 24 × 1 Infinium HTS Human Core Exome microarrays according to the protocol provided by the manufacturer. In order to discover and verify genetic risk-factors for KD, association analysis was carried out using PLINK 1.9.Results: Of all 164,395 variants, 5 were shown to occur statistically (padjusted < 0.05) more frequent in Kawasaki disease patients than in controls. Those are: rs12037447 in non-coding sequence (padjusted = 8.329 × 10−4, OR = 8.697, 95% CI; 3.629–20.84) and rs146732504 in KIF25 (padjusted = 0.007354, OR = 11.42, 95% CI; 3.79–34.43), rs151078858 in PTPRJ (padjusted = 0.04513, OR = 8.116, 95% CI; 3.134–21.01), rs55723436 in SPECC1L (padjusted = 0.04596, OR = 5.596, 95% CI; 2.669–11.74), rs6094136 in RPN2 (padjusted = 0.04755, OR = 10.08, 95% CI; 3.385–30.01) genes.Conclusion: Polymorphisms of genes KIF25, PTRPJ, SPECC1L, RNP2 may be linked with the incidence of Kawasaki disease in Polish children.
High antibiotic resistance of gastric pathogen Helicobacter pylori (Hp) and the ability to escape the host immune response prompt searching for therapeutic immunomodulators. Bacillus Calmette–Guerin (BCG) vaccine with Mycobacterium bovis (Mb) is a candidate for modulation the activity of immunocompetent cells, and onco-BCG formulation was successfully used in immunotherapy of bladder cancer. We determined the influence of onco-BCG on the phagocytic capacity of human THP-1 monocyte/macrophage cells, using the model of Escherichia coli bioparticles and Hp fluorescently labeled. Deposition of cell integrins CD11b, CD11d, CD18, membrane/soluble lipopolysaccharide (LPS) receptors, CD14 and sCD14, respectively, and the production of macrophage chemotactic protein (MCP)-1 were determined. Furthermore, a global DNA methylation, was also assessed. Human THP-1 monocytes/macrophages (TIB 202) primed or primed and restimulated with onco-BCG or Hp, were used for assessment of phagocytosis towards E. coli or Hp, surface (immunostaining) or soluble activity determinants, and global DNA methylation (ELISA). THP-1 monocytes/macrophages primed/restimulated with BCG showed increased phagocytosis capacity towards E. coli fluorescent particles, elevated expression of CD11b, CD11d, CD18, CD14, sCD14, increased MCP-1 secretion and DNA methylation. Preliminary results indicate that BCG mycobacteria may also induce the phagocytosis of H. pylori by THP-1 monocytes. Priming or priming and restimulation of monocytes/macrophages with BCG resulted in an increased activity of these cells, which was negatively modulated by Hp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.