One of the basic sanity properties of a behavioural semantics is that it constitutes a congruence with respect to standard process operators. This issue has been traditionally addressed by the development of rule formats for transition system specifications that define process algebras. In this paper we suggest a novel, orthogonal approach. Namely, we focus on a number of process operators, and for each of them attempt to find the widest possible class of congruences. To this end, we impose restrictions on sublanguages of Hennessy-Milner logic, so that a semantics whose modal characterization satisfies a given criterion is guaranteed to be a congruence with respect to the operator in question. We investigate action prefix, alternative composition, two restriction operators, and parallel composition
We present a theory of abstraction for the framework of parameterised Boolean equation systems, a firstorder fixpoint logic. Parameterised Boolean equation systems can be used to solve a variety of problems in verification. We study the capabilities of the abstraction theory by comparing it to an abstraction theory for Generalised Kripke modal Transition Systems (GTSs). We show that for model checking the modal μ-calculus, our abstractions can be exponentially more succinct than GTSs and our theory is as complete as the GTS framework for abstraction. Furthermore, we investigate the completeness of our theory irrespective of the encoded decision problem. We illustrate the potential of our theory through case studies using the first-order modal μ-calculus and a real-time extension thereof, conducted using a prototype implementation of a new syntactic transformation for parameterised Boolean equation systems.
Dull, weak and nested solitaire games are important classes of parity games, capturing, among others, alternation-free mu-calculus and ECTL* model checking problems. These classes can be solved in polynomial time using dedicated algorithms. We investigate the complexity of Zielonka's Recursive algorithm for solving these special games, showing that the algorithm runs in O(d (n + m)) on weak games, and, somewhat surprisingly, that it requires exponential time to solve dull games and (nested) solitaire games. For the latter classes, we provide a family of games G, allowing us to establish a lower bound of 2^(n/3). We show that an optimisation of Zielonka's algorithm permits solving games from all three classes in polynomial time. Moreover, we show that there is a family of (non-special) games M that permits us to establish a lower bound of 2^(n/3), improving on the previous lower bound for the algorithm
We study two notions of expressiveness, which have appeared in abstraction theory for model checking, and find them incomparable in general. In particular, we show that according to the most widely used notion, the class of Kripke Modal Transition Systems is strictly less expressive than the class of Generalised Kripke Modal Transition Systems (a generalised variant of Kripke Modal Transition Systems equipped with hypertransitions). Furthermore, we investigate the ability of an abstraction framework to prove a formula with a finite abstract model, a property known as completeness. We address the issue of completeness from a general perspective: the way it depends on certain abstraction parameters, as well as its relationship with expressiveness
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.