Switching of photocurrent direction in semiconducting systems upon changes of the electrode potential or incident light wavelength was realized by a series of photoelectrodes covered with titania modified with pentacyanoferrate complexes, [Fe(CN)(5)L](n)(-) (L = NH(3), thiodiethanol, thiodipropanol). These materials were characterized by optical spectroscopy and electrochemistry. The structure of the surface complexes was modeled using simple quantum-chemical models. The electrodes described in this paper enable control of the photocurrent direction by two stimuli: Changing the wavelength or the photoelectrode potential easily switches the direction of photocurrent. The materials are different from those of similar characteristics studied by other authors: They are not composites comprising of two types of semiconductors but rather engineered uniform materials. The photocurrent switching phenomenon is an intrinsic feature resulting from a specific electronic structure of the surface-modified semiconductor.
Photosensitization of nanocrystalline titanium dioxide materials has been achieved by chemisorption of the pentacyanothiamineferrate(II) complex, which offers a relatively high redox potential that determines the photoelectrochemical properties of the photosensitized TiO(2). The adsorbed pentacyanoferrate complex binds to TiO(2) through the cyanide bridge and forms a new surface complex characterized by a metal-to-metal charge-transfer transition (MMCT) (Fe(II)-->Ti(IV)). The photosensitization can be observed only at low potentials at which Fe(II) moieties are present. Photocurrent switching between anodic and cathodic can be induced by varying either the photoelectrode potential or the wavelength of the incident light. Simple molecular modeling-together with spectroscopic and electrochemical measurements-allows the elucidation of the mechanism of the observed photoelectrochemical behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.