This paper presents a method of high-capacity and transparent watermarking based on the usage of deep neural networks with the adjustable subsquares properties algorithm to encode the data of a watermark in high-quality video using the H.265/HEVC (High-Efficiency Video Coding) codec. The aim of the article is to present a method of embedding a watermark in a video with HEVC codec compression by making changes in a video in a way that is not noticeable to the naked eye. The method presented here is characterised by focusing on ensuring the accuracy of the original image in relation to the watermarked image, providing the transparency of the embedded watermark, while ensuring its survival after compression by the HEVC codec. The article includes a presentation of the practical results of watermark embedding with a built-in variation mechanism of its capacity and resistance, thanks to the adjustable subsquares properties algorithm. The obtained PSNR (peak signal-to-noise ratio) results are at the level of 40 dB or better. There is the possibility of the complete recovery of a watermark from a single frame compressed in the CRF (constant rate factor) range of up to 16, resulting in a BER (bit error rate) equal to 0 for the received watermark.
This article presents a method for transparent watermarking of high-capacity watermarked video under H.265/HEVC (High-Efficiency Video Coding) compression conditions while maintaining high-quality encoded image. The aim of this paper is to present a method for watermark embedding using neural networks under conditions of subjecting video to lossy compression of the HEVC codec using the YUV420p color model chrominance channel for watermarking. This paper presents a method for training a deep neural network to embed a watermark when a compression channel is present. The discussed method is characterized by high accuracy of the video with an embedded watermark compared to the original. The PSNR (peak signal-to-noise ratio) values obtained are over 44 dB. The watermark capacity is 96 bits for an image with a resolution of 128 × 128. The method enables the complete recovery of a watermark from a single video frame compressed by the HEVC codec within the range of compression values defined by the CRF (constant rate factor) up to 22.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.