High concentrations of aldehydes may result in poor-quality agricultural distillate. We investigate the influence of the method of mash preparation, the initial pH of the mashes, and different yeast strains on the fermentation efficiency and concentration of aldehydes from C2 (acetaldehyde) to C7 (enanthaldehyde) in rye mashes. The tested factors were revealed to have a differentiated influence on both the process efficiency and the concentrations of aldehydes, especially in the case of the dominant acetaldehyde. Mashes obtained from steamed rye grain showed significantly higher fermentation efficiencies than those prepared by the pressureless method. Increasing the pH of the sweet mashes from 4.5 to 6.0 resulted in significantly higher concentrations of acetaldehyde, especially in the case of steamed rye grain. Moreover, an increase in the concentrations of other aldehydes, i.e., from C3 (propionaldehyde) to C5 (valer- and isovaleraldehyde) was observed. A high fermentation efficiency and the lowest acetaldehyde concentrations were obtained from steamed rye mashes with an initial pH of 4.5, fermented using the yeast strains DistilaMax GW and DistilaMax HT. DistilaMax HT yeast also provided a relatively low concentration of acetaldehyde in mashes with an initial pH in the range of 4.5–5.5 prepared by the energy-saving pressureless method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.