In order to evaluate the prevalence of security and privacy practices on a representative sample of the Web, researchers rely on website popularity rankings such as the Alexa list. While the validity and representativeness of these rankings are rarely questioned, our findings show the contrary: we show for four main rankings how their inherent properties (similarity, stability, representativeness, responsiveness and benignness) affect their composition and therefore potentially skew the conclusions made in studies. Moreover, we find that it is trivial for an adversary to manipulate the composition of these lists. We are the first to empirically validate that the ranks of domains in each of the lists are easily altered, in the case of Alexa through as little as a single HTTP request. This allows adversaries to manipulate rankings on a large scale and insert malicious domains into whitelists or bend the outcome of research studies to their will. To overcome the limitations of such rankings, we propose improvements to reduce the fluctuations in list composition and guarantee better defenses against manipulation. To allow the research community to work with reliable and reproducible rankings, we provide TRANCO, an improved ranking that we offer through an online service available at https://tranco-list.eu.
In this paper, we propose stochastic fingerprints for application traffic flows conveyed in Secure Socket Layer/Transport Layer Security (SSL/TLS) sessions. The fingerprints are based on first-order homogeneous Markov chains for which we identify the parameters from observed training application traces. As the fingerprint parameters of chosen applications considerably differ, the method results in a very good accuracy of application discrimination and provides a possibility of detecting abnormal SSL/TLS sessions. Our analysis of the results reveals that obtaining application discrimination mainly comes from incorrect implementation practice, the misuse of the SSL/TLS protocol, various server configurations, and the application nature.
Network measurements are an important tool in understanding the Internet. Due to the expanse of the IPv6 address space, exhaustive scans as in IPv4 are not possible for IPv6. In recent years, several studies have proposed the use of target lists of IPv6 addresses, called IPv6 hitlists.In this paper, we show that addresses in IPv6 hitlists are heavily clustered. We present novel techniques that allow IPv6 hitlists to be pushed from quantity to quality. We perform a longitudinal active measurement study over 6 months, targeting more than 50 M addresses. We develop a rigorous method to detect aliased prefixes, which identifies 1.5 % of our prefixes as aliased, pertaining to about half of our target addresses. Using entropy clustering, we group the entire hitlist into just 6 distinct addressing schemes. Furthermore, we perform client measurements by leveraging crowdsourcing.To encourage reproducibility in network measurement research and to serve as a starting point for future IPv6 studies, we publish source code, analysis tools, and data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.