Abstract. Recently, opacity has proved to be a promising technique for describing security properties. Much of the work has been couched in terms of Petri nets. Here, we extend the notion of opacity to the model of labelled transition systems and generalise opacity in order to better represent concepts from the work on information flow. In particular, we establish links between opacity and the information flow concepts of anonymity and non-interference such as non-inference. We also investigate ways of verifying opacity when working with Petri nets. Our work is illustrated by an example modelling requirements upon a simple voting system.
Softcover reprint of the hardco ver Ist edition 200 I The use of general descriptive names, trademarks, etc. in this publication does not imply,even in the absence of a specific statement, that such names are exempt from the relevant protective laws and therefore free for general use.
We consider opacity as a property of the local states of the secure (or high-level) part of the system, based on the observation of the local states of a low-level part of the system as well as actions. We propose a Petri net modelling technique which allows one to specify different information flow properties, using suitably defined observations of system behaviour. We then discuss expressiveness of the resulting framework and the decidability of the associated verification problems.
In this paper, we develop a general technique for truncating Petri net unfoldings, parameterised according to the level of information about the original unfolding one wants to preserve. Moreover, we propose a new notion of completeness of a truncated unfolding. A key aspect of our approach is an algorithm-independent notion of cutoff events, used to truncate a Petri net unfolding. Such a notion is based on a cutting context and results in the unique canonical prefix of the unfolding. Canonical prefixes are complete in the new, stronger sense, and we provide necessary and sufficient conditions for its finiteness, as well as upper bounds on its size in certain cases. A surprising result is that after suitable generalisation, the standard unfolding algorithm presented in [5], and the parallel unfolding algorithm proposed in [8], despite being non-deterministic, generate the canonical prefix. This gives an alternative correctness proof for the former algorithm, and a new (much simpler) proof for the latter one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.