BackgroundComputational intelligence methods, including non-linear classification algorithms, can be used in medical research and practice as a decision making tool. This study aimed to evaluate the usefulness of artificial intelligence models for 5–year overall survival prediction in patients with cervical cancer treated by radical hysterectomy.MethodsThe data set was collected from 102 patients with cervical cancer FIGO stage IA2-IIB, that underwent primary surgical treatment. Twenty-three demographic, tumor-related parameters and selected perioperative data of each patient were collected. The simulations involved six computational intelligence methods: the probabilistic neural network (PNN), multilayer perceptron network, gene expression programming classifier, support vector machines algorithm, radial basis function neural network and k-Means algorithm. The prediction ability of the models was determined based on the accuracy, sensitivity, specificity, as well as the area under the receiver operating characteristic curve. The results of the computational intelligence methods were compared with the results of linear regression analysis as a reference model.ResultsThe best results were obtained by the PNN model. This neural network provided very high prediction ability with an accuracy of 0.892 and sensitivity of 0.975. The area under the receiver operating characteristics curve of PNN was also high, 0.818. The outcomes obtained by other classifiers were markedly worse.ConclusionsThe PNN model is an effective tool for predicting 5–year overall survival in cervical cancer patients treated with radical hysterectomy.
In this paper, we propose new methods for the choice and adaptation of the smoothing parameter of the probabilistic neural network (PNN). These methods are based on three reinforcement learning algorithms: Q(0)-learning, Q(λ)-learning, and stateless Q-learning. We regard three types of PNN classifiers: the model that uses single smoothing parameter for the whole network, the model that utilizes single smoothing parameter for each data attribute, and the model that possesses the matrix of smoothing parameters different for each data variable and data class. Reinforcement learning is applied as the method of finding such a value of the smoothing parameter, which ensures the maximization of the prediction ability. PNN models with smoothing parameters computed according to the proposed algorithms are tested on eight databases by calculating the test error with the use of the cross validation procedure. The results are compared with state-of-the-art methods for PNN training published in the literature up to date and, additionally, with PNN whose sigma is determined by means of the conjugate gradient approach. The results demonstrate that the proposed approaches can be used as alternative PNN training procedures.
The aim of this article was to compare gene expression programming (GEP) method with three types of neural networks in the prediction of adverse events of radical hysterectomy in cervical cancer patients. Onehundred and seven patients treated by radical hysterectomy were analyzed. Each record representing a single patient consisted of 10 parameters. The occurrence and lack of perioperative complications imposed a two-class classification problem. In the simulations, GEP algorithm was compared to a multilayer perceptron (MLP), a radial basis function network neural, and a probabilistic neural network. The generalization ability of the models was assessed on the basis of their accuracy, the sensitivity, the specificity, and the area under the receiver operating characteristic curve (AUROC). The GEP classifier provided best results in the prediction of the adverse events with the accuracy of 71.96 %. Comparable but slightly worse outcomes were obtained using MLP, i.e., 71.87 %. For each of measured indices: accuracy, sensitivity, specificity, and the AUROC, the standard deviation was the smallest for the models generated by GEP classifier.
In this article, an iterative procedure is proposed for the training process of the probabilistic neural network (PNN). In each stage of this procedure, the Q(0)-learning algorithm is utilized for the adaptation of PNN smoothing parameter (σ). Four classes of PNN models are regarded in this study. In the case of the first, simplest model, the smoothing parameter takes the form of a scalar; for the second model, σ is a vector whose elements are computed with respect to the class index; the third considered model has the smoothing parameter vector for which all components are determined depending on each input attribute; finally, the last and the most complex of the analyzed networks, uses the matrix of smoothing parameters where each element is dependent on both class and input feature index. The main idea of the presented approach is based on the appropriate update of the smoothing parameter values according to the Q(0)-learning algorithm. The proposed procedure is verified on six repository data sets. The prediction ability of the algorithm is assessed by computing the test accuracy on 10 %, 20 %, 30 %, and 40 % of examples drawn randomly from each input data set. The results are compared with the test accuracy obtained by PNN trained using the conjugate gradient procedure, support vector machine algorithm, gene expression programming classifier, k-Means method, multilayer perceptron, radial basis function neural network and learning vector quantization neural network. It is shown M. Kusy () • R. Zajdel Faculty of Electrical and Computer Engineering,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.