The paper concerns a hydrometallurgical method for selective recovery of copper from low-grade electric and electronic wastes. The following consecutive stages were proposed: smelting of the scraps to produce Cu-Zn-Ag alloy, leaching of the alloy in ammoniacal solution, and selective copper electrowinning. Cu-Zn-Ag alloy was a polymetallic and five-phase system. It was leached in chloride, carbonate, sulfate and thiosulfate solutions. This resulted in the separation of the metals, wherein metallic tin and silver as well as lead salts remained in the slimes, while copper and zinc were transferred to the electrolyte. Copper was selectively recovered from the ammoniacal solutions by the electrolysis, leaving zinc ions in the electrolyte. The best conditions of the alloy treatment were obtained in the ammoniacarbonate system, where the final product was copper of high purity (99.9 %) at the current efficiency of 60 %. Thiosulfate solution was not applicable for the leaching of the copper alloy due to secondary reactions of the formation of copper(I) thiosulfate complexes and precipitation of copper(I) sulfide, both inhibiting dissolution of the metallic material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.