The effect of ligand structure on the catalytic activity of amine-bis(phenolate) chromium(III) complexes in the ring-opening copolymerization of phthalic anhydride and a series epoxides was studied. Eight complexes differing in the donor-pendant group (R1) and substituents (R2) in phenolate units were examined as catalysts of the model reaction between phthalic anhydride and cyclohexane oxide in toluene. They were used individually or as a part of the binary catalytic systems with nucleophilic co-catalysts. The co-catalyst was selected from the following organic bases: PPh3, DMAP, 1-butylimidazole, or DBU. The binary catalytic systems turned out to be more active than the complexes used individually, and DMAP proved to be the best choice as a co-catalyst. When the molar ratio of [PA]:[epoxide]:[Cr]:[DMAP] = 250:250:1:1 was applied, the most active complex (R1-X = CH2NMe2, R2 = F) allowed to copolymerize phthalic anhydride with differently substituted epoxides (cyclohexene oxide, 4-vinylcyclohexene oxide, styrene oxide, phenyl glycidyl ether, propylene oxide, butylene oxide, and epichlorohydrin) within 240 min at 110 °C. The resulting polyesters were characterized by Mn up to 20.6 kg mol−1 and narrow dispersity, and they did not contain polyether units.
Orthophosphoric acid solutions of sodium orthovanadate, sodium tungstate, and sodium molybdate are tested as potential corrosion inhibitors of the Al 2 Cu intermetallic phase. Corrosion inhibition is observed for 0.2 M solutions of Na 3 VO 4 and Na 2 WO 4 by increasing the pH to > 2. When the pH is < 2, the aforementioned salts increase the corrosion rate of the intermetallic phase. A 0.2 M solution of Na 3 VO 4 causes the precipitation of vanadium phosphate on the surface of the Al 2 Cu phase at pH = 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.