The development of internal combustion engines involves various new solutions, one of which is the use of dual-fuel systems. The diversity of technological solutions being developed determines the efficiency of such systems, as well as the possibility of reducing the emission of carbon dioxide and exhaust components into the atmosphere. An innovative double direct injection system was used as a method for forming a mixture in the combustion chamber. The tests were carried out with the use of gasoline, ethanol, n-heptane, and n-butanol during combustion in a model test engine—the rapid compression machine (RCM). The analyzed combustion process indicators included the cylinder pressure, pressure increase rate, heat release rate, and heat release value. Optical tests of the combustion process made it possible to analyze the flame development in the observed area of the combustion chamber. The conducted research and analyses resulted in the observation that it is possible to control the excess air ratio in the direct vicinity of the spark plug just before ignition. Such possibilities occur as a result of the properties of the injected fuels, which include different amounts of air required for their stoichiometric combustion. The studies of the combustion process have shown that the combustible mixtures consisting of gasoline with another fuel are characterized by greater combustion efficiency than the mixtures composed of only a single fuel type, and that the influence of the type of fuel used is significant for the combustion process and its indicator values.
The proposed article involves an investigation of the processes taking place during the preparation of mixed fuels that are combined directly before combustion. The fuel dose formed in this way must take into account the qualitative and quantitative composition of the fuels and the amount of air in the process. Given that liquid fuels similar to gasoline (e.g. methanol, ethanol, butanol) are characterized by different properties, their comparison would be useful in order to use their ratio to influence the combustion process. The process of fuel preparation plays a decisive role in this issue. The article describes abilities of modelling the injection of various fuels simultaneously to the combustion chamber for creating fuel mixture directly before ignition. First part of the article consists of analysis of light hydrocarbon fuels mixing abilities, supported with present research data. Next part describes the evaluation of execution of the assumed system – two fuel injectors with analysis of spray penetration. The modelling of the injection and spray was performed in the AVL FIRE 2014.2 environment and the results were presented. The injection possibility was proven by injecting the fuel to the combustion chamber model. Local values of air-fuel ratio, density and ambient pressure were presented to better understand the potential in mixing fuels directly before ignition. The conclusion includes description of fuel mixing abilities, influence of various fuels on creation of a stratified mixture and definition of controllability of charge ignition.
The article presents an overview of technical solutions for dual fuel systems used in internal combustion engines. It covers the historical and contemporary genesis of using two fuels simultaneously in the combustion process. The authors pay attention to the value of the excess air coefficient in the cylinder, as the ignitability of the fuel dose near the spark plug is a critical factor. The mixture formation of compression ignition based systems are also analyzed. The results of research on indirect and direct injection systems (and their combinations) have been presented. Research sections were separated based to the use of gasoline with other fuels or diesel oil with other fuels. It was found that the use of two fuels in different configurations of the fuel supply systems extends the conditions for the use of modern combustion systems (jet controlled compression ignition, reactivity controlled compression ignition, intelligent charge compression ignition, premixed charge compression ignition), which will enable further improvement of combustion efficiency.
The research aims to recognize the potential of adopting the model-based design methodology to the development process of an LPG fuelling system. Changing regulations often force the modern development of internal combustion engines (Euro 7, CO2 reduction measures, etc.). With the definitive ban on new registrations of vehicles powered by internal combustion engines in Europe (planned for 2035), there is still ongoing development of the adaptation of the fuelling system to LPG. There is still market potential in adapting new internal combustion engines, usually equipped with direct injection systems, to reduce customers’ cost of ownership of a vehicle. As the engineering process should be accelerated in the face of the variety of direct injection systems offered by OEMs, the model-based design methodology is proposed to make the development more effective. The article presents the SWOT analysis of this approach in the engineering process and the potential of the method in an LPG system development is concluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.