International audienceThis paper deals with the design of scalar metasurface antennas able to radiate a well-polarized beam in the far field or near field zones. The equivalent electric current over the metasurface is used to derive design equations to generate the desired field pattern based on the scalar impedance condition. In particular, it is shown that scalar metasurfaces can be used to generate linear and circular polarizations for a fixed pointing direction in the far field by properly changing locally the scalar impedance boundary condition. In addition, they can also be used to generate normal polarized Bessel beams in the near field region. Several solutions are presented at 20 GHz, with different polarizations and feeders developed in the framework of a two-year research project financed by the French space agency (Centre National d'Etudes Spatiales, CNES). Measurements and full-wave results validate the proposed approach
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Wide-angle coverage, fine angular resolution and low-power consumption are key characteristics of millimeterwave (mm-wave) short-range wireless systems, such as access points in fifth-generation (5G) cellular networks and automotive radars. In this paper, we present a 60-GHz switched-beam antenna system addressing all these requirements. It consists of two identical parallel-fed arrays of 8 slots, each fed by a passive pillbox beamformer. A switch network comprising four singlepole-multiple-throw (SPnT) switches excites one of the two arrays at a time and selects the radiated beam. The whole system is fully-integrated in a multilayer low temperature co-fired ceramic (LTCC) module. The antenna covers a scan range of about ±39 • in one plane using eleven beams, between 57 GHz and 66 GHz. The proposed architecture enables the simultaneous achievement of continuous coverage (beam crossover levels of about-3 dB) and of low sidelobe levels (SLLs). Dedicated numerical tools are used for a preliminary design of the antenna. The design procedure, the technological development and the experimental results are discussed in detail. Index Terms-switched-beam antenna, millimeter-wave antennas, 5G, 60-GHz communications, low temperature co-fired ceramic (LTCC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.