Polyhydroxyalkanoates (PHAs) make a large class of biodegradable biopolymers that are naturally synthesized by numerous microorganisms. These biopolymers could be an alternative to commonly used plastics based on petroleum. Production of PHAs in bioreactors using microorganisms is not widely applied due to its unprofitability. Using transgenic plants for this purpose may be cheaper and more environmental friendly because the biosynthesis of PHAs in plants is based only on water, mineral salts, CO 2 and light. Additionally, plants are not capable of degrading PHAs as bacteria do, and extraction of PHAs from plant tissues is not always necessary. The main objective of this work is a review of possibilities of PHA biosynthesis in transgenic plants and presentation of general information on properties and potential application possibilities of these biopolymers. The possibility of syntheses and accumulation of PHA in several transgenic plants has been studied for some years. Many experiments were performed on model plant Arabidopsis thaliana, however, the research has also revealed a great potential of transgenic crop plants such as camelina (Camelina sativa), tobacco (Nicotiana tabacum) or sugarcane (Saccharum officinarum) as a good sources of PHAs. The highest level of PHAs accumulation in plants was achieved in transgenic A. thaliana (up to 40% of the dry weight of the leaf), and among crop plants in C. sativa (up to 20% of the dry weight of the seed). Increasing knowledge on PHAs permits expansion of the possibilities of these biopolymers use even at a low level of their accumulation in plant tissues.
Systemic acquired resistance (SAR) is a natural mechanism that is triggered in plants as a response to pathogen attack and results in systemic increased resistance. SAR inducers are therefore an...
Triggering the plant resistance induction phenomenon by chemical compounds, for example acibenzolar-S-methyl ester, has been known and described in scientific literature. Other benzothadiazole derivatives have been also described; however, their properties have not been sufficiently studied. The tested substance, N-methyl-N-methoxyamide-7-carboxybenzo(1.2.3)thiadiazole (BTHWA), is an amide derivative of benzothiadiazole, showing a stimulating effect on plant growth, apart from its plant resistance inducing activity. This article presents the impact of BTHWA, used solo and in the program with fungicides, on the strawberry plants development, fruits health, yield, and quality parameters of the crop. The results show that the combined use of BTHWA and fungicides had a positive impact on the plants health and fruit health and nutraceutical and nutritional composition of compounds when compared to the results obtained when strawberries were treated only with the BTHWA or the fungicide. As a result of BTHWA use, the partitioning of assimilates has changed, which directly translated into the results of the conducted experiments. A reduction in the respiration of the fruit during storage was also observed, possibly due to a reduced disease infestation and a lower dry matter content in the fruit. A correlation between the parameters determined during the experiment was found. The BTHWA mode of action was evidenced to be beneficial to strawberry plants and fruit.
Ash tree disease is caused by an ascomycete fungus Hymenoscyphus fraxineus, which first emerged in 1992, eastern Poland. Site factors, genetic predispositions, and resistance to the pathogen have not been fully described yet. The general aim of the study undertaken was to check the effect of using a new active substance representing benzothiadiazoles, a BTH derivative, namely, N-methyl-N-methoxyamide-7-carboxybenzo(1.2.3)thiadiazole (BTHWA), on ash saplings. A total of 41 ash saplings, aged three to five years, were subjected to this experiment in six variants of treatment. The results of the inoculation with H. fraxineus indicated that the treatment with BTHWA resulted in the limitation of the size of necrotic phloem lesions. Although the lesions were detectable in the cross section, the plants showed no visible signs of infection. The results suggest that H. fraxineus development in ash saplings can be slowed down or even completely stopped through triggering plant resistance by BTHWA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.