We introduce a language-independent, graph-based probabilistic model of morphology, which uses transformation rules operating on whole words instead of the traditional morphological segmentation. The morphological analysis of a set of words is expressed through a graph having words as vertices and structural relationships between words as edges. We define a probability distribution over such graphs and develop a sampler based on the Metropolis-Hastings algorithm. The sampling is applied in order to determine the strength of morphological relationships between words, filter out accidental similarities and reduce the set of rules necessary to explain the data. The model is evaluated on the task of finding pairs of morphologically similar words, as well as generating new words. The results are compared to a state-of-the-art segmentation-based approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.