The implemented online urban noise pollution monitoring system is presented with regard to its conceptual assumptions and technical realization. A concept of the noise source parameters dynamic assessment is introduced. The idea of noise modeling, based on noise emission characteristics and emission simulations, was developed and practically utilized in the system. Furthermore, the working system architecture and the data acquisition scheme are described. The method for increasing the speed of noise map calculation employing a supercomputer is explained. The practical implementation of noise maps generation and visualization system is presented, together with introduced improvements in the domain of continuous noise monitoring and acoustic maps creation. Some results of tests performed using the system prototype are shown. The main focus is put on assessing the efficiency of the acoustic maps created with the discussed system, in comparison to results obtained with traditional methods.
The algorithm for people counting in crowded scenes, based on the idea of virtual gate which uses optical flow method is presented. The concept and practical application of the developed algorithm under real conditions is depicted. The aim of the work is to estimate the number of people passing through entrances of a large sport hall. The most challenging problem was the unpredicted behavior of people while entering the building. The examined flow of people fluctuated between individual persons and dense crowd. A series of experiments during sport and entertainment events was made. The results of the experiments show a high efficiency of the elaborated algorithm.
The results of long-term continuous noise measurements in two selected schools are presented in the paper. Noise characteristics were measured continuously there for approximately 16 months. Measurements started eight months prior to the acoustic treatment of the school corridors of both schools. An evaluation of the acoustic climates in both schools, before and after the acoustic treatment, was performed based on comparison of these two periods of continuous measurements. The autonomous noise monitoring stations, engineered at the Multimedia Systems Department of the Gdańsk University of Technology were used for this purpose. Investigations of measured noise, especially its influence on hearing sense, assessed on ground of spectral analyses in critical bands, is discussed. Effects of occupational noise exposure, including the Temporary Threshold Shift simulation, are determined. The correlation of the above said measurement results with respective instantaneous noise levels is discussed, and concluding remarks are presented. Some additional indicators such as air pollution or video analysis aiming at the analysis of corridor occupancy are also measured. It should be remembered that excessive noise, or air pollution may be evidence of a dangerous event and may pose health risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.