Bisphenol A (BPA), a chemical incorporated into plastics and resins, has estrogenic activity and is associated with adverse health effects in humans and wildlife. Similarly structured BPA analogues are widely used but far less is known about their potential toxicity or estrogenic activity in vivo. We undertook the first comprehensive analysis on the toxicity and teratogenic effects of the bisphenols BPA, BPS, BPF, and BPAF in zebrafish embryo-larvae and an assessment on their estrogenic mechanisms in an estrogen-responsive transgenic fish Tg(ERE:Gal4ff)(UAS:GFP). The rank order for toxicity was BPAF > BPA > BPF > BPS. Developmental deformities for larval exposures included cardiac edema, spinal malformation, and craniofacial deformities and there were distinct differences in the effects and potencies between the different bisphenol chemicals. These effects, however, occurred only at concentrations between 1.0 and 200 mg/L which exceed those in most environments. All bisphenol compounds induced estrogenic responses in Tg(ERE:Gal4ff)(UAS:GFP) zebrafish that were inhibited by coexposure with ICI 182 780, demonstrating an estrogen receptor dependent mechanism. Target tissues included the heart, liver, somite muscle, fins, and corpuscles of Stannius. The rank order for estrogenicity was BPAF > BPA = BPF > BPS. Bioconcentration factors were 4.5, 17.8, 5.3, and 0.067 for exposure concentrations of 1.0, 1.0, 0.10, and 50 mg/L for BPA, BPF, BPAF, and BPS, respectively. We thus show that these BPA alternatives induce similar toxic and estrogenic effects to BPA and that BPAF is more potent than BPA, further highlighting health concerns regarding the use of BPA alternatives.
Bisphenol A (BPA) is a commercially important high production chemical widely used in epoxy resins and polycarbonate plastics, and is ubiquitous in the environment. Previous studies demonstrated that BPA activates estrogenic signaling pathways associated with adverse effects on reproduction in vertebrates and that exposure can induce epigenetic changes. We aimed to investigate the reproductive effects of BPA in a fish model and to document its mechanisms of toxicity. We exposed breeding groups of zebrafish (Danio rerio) to 0.01, 0.1, and 1 mg/L BPA for 15 d. We observed a significant increase in egg production, together with a reduced rate of fertilization in fish exposed to 1 mg/L BPA, associated with significant alterations in the transcription of genes involved in reproductive function and epigenetic processes in both liver and gonad tissue at concentrations representing hotspots of environmental contamination (0.1 mg/L) and above. Of note, we observed reduced expression of DNA methyltransferase 1 (dnmt1) at environmentally relevant concentrations of BPA, along with a significant reduction in global DNA methylation, in testes and ovaries following exposure to 1 mg/L BPA. Our findings demonstrate that BPA disrupts reproductive processes in zebrafish, likely via estrogenic mechanisms, and that environmentally relevant concentrations of BPA are associated with altered transcription of key enzymes involved in DNA methylation maintenance. These findings provide evidence of the mechanisms of action of BPA in a model vertebrate and advocate for its reduction in the environment.
Environmental exposure to Bisphenol A (BPA) has been associated with a range of adverse health effects, including on the cardiovascular system in humans. Lack of agreement on its mechanism(s) of action likely stem from comparisons between in vivo and in vitro test systems and potential multiple effects pathways. In rodents, in vivo, metabolic activation of BPA produces 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which is reported to be up to 1000 times more potent as an estrogen than BPA. We investigated the estrogenic effects and estrogen receptor signaling pathway(s) of BPA and MBP following early life exposure using a transgenic, estrogen responsive (ERE-TG) zebrafish and a targeted morpholino approach to knockdown the three fish estrogen receptor (ER) subtypes. The functional consequences of BPA exposure on the cardiovascular system of zebrafish larvae were also examined. The heart atrioventricular valves and the bulbus arteriosus were primary target tissues for both BPA and MBP in the ERE-TG zebrafish, and MBP was approximately 1000-fold more potent than BPA as an estrogen in these tissues. Estrogen receptor knockdown with morpholinos indicated that the estrogenic responses in the heart for both BPA and MBP were mediated via an estrogen receptor 1 (esr1) dependent pathway. At the highest BPA concentration tested (2500 μg/L), alterations in the atrial:ventricular beat ratio indicated a functional impact on the heart of 5 days post fertilization (dpf) larvae, and there was also a significantly reduced heart rate in these larvae at 14 dpf. Our findings indicate that some of the reported adverse effects on heart function associated with BPA exposure (in mammals) may act through an estrogenic mechanism, but that fish are unlikely to be susceptible to adverse effects on heart development for environmentally relevant exposures.
The plastic monomer bisphenol A (BPA) is one of the highest production volume chemicals in the world and is frequently detected in wildlife and humans, particularly children. BPA has been associated with numerous adverse health outcomes relating to its estrogenic and other hormonal properties, but direct causal links are unclear in humans and animal models. Here we simulated measured (1×) and predicted worst-case (10× ) maximum fetal exposures for BPA, or equivalent concentrations of its metabolite MBP, using fluorescent reporter embryo-larval zebrafish, capable of quantifying Estrogen Response Element (ERE) activation throughout the body. Heart valves were primary sites for ERE activation by BPA and MBP, and transcriptomic analysis of microdissected heart tissues showed that both chemicals targeted several molecular pathways constituting biomarkers for calcific aortic valve disease (CAVD), including extra-cellular matrix (ECM) alteration. ECM collagen deficiency and impact on heart valve structural integrity were confirmed by histopathology for high-level MBP exposure, and structural defects (abnormal curvature) of the atrio-ventricular valves corresponded with impaired cardiovascular function (reduced ventricular beat rate and blood flow). Our results are the first to demonstrate plausible mechanistic links between ERE activation in the heart valves by BPA’s reactive metabolite MBP and the development of valvular-cardiovascular disease states.
Rapid embryogenesis, together with genetic similarities with mammals, and the desire to reduce mammalian testing, are major incentives for using the zebrafish model in chemical screening and testing. Transgenic zebrafish, engineered for identifying target gene expression through expression of fluorophores, have considerable potential for both high-content and high-throughput testing of chemicals for endocrine activity. Here we generated an estrogen responsive transgenic zebrafish model in a pigment-free "Casper" phenotype, facilitating identification of target tissues and quantification of these responses in whole intact fish. Using the ERE-GFP-Casper model we show chemical type and concentration dependence for green fluorescent protein (GFP) induction and both spatial and temporal responses for different environmental estrogens tested. We also developed a semiautomated (ArrayScan) imaging and image analysis system that we applied to quantify whole body fluorescence responses for a range of different estrogenic chemicals in the new transgenic zebrafish model. The zebrafish model developed provides a sensitive and highly integrative system for identifying estrogenic chemicals, their target tissues and effect concentrations for exposures in real time and across different life stages. It thus has application for chemical screening to better direct health effects analysis of environmental estrogens and for investigating the functional roles of estrogens in vertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.