Legal restrictions on vehicle engine exhaust gas emission control do not always go hand in hand with an actual reduction in the emissions of toxins into the atmosphere. Moreover, the methods currently used to measure exhaust gas emissions do not give unambiguous results on the impact of the tested gases on living organisms. The method used to assess the actual toxicity of gases, BAT-CELL Bio-Ambient-Tests using in vitro tests, takes into account synergistic interactions of individual components of a mixture of gases without the need to know its qualitative and quantitative composition and allows for determination of the actual toxicity of the gas composition. Using the BAT-CELL method, exhaust gases from passenger vehicles equipped with spark-ignition engines complying with the Euro 3 and Euro 6 emission standards were tested. The results of toxicological tests were correlated with the results of chromatographic analysis. It was shown that diverse qualitative composition of the mixture of hydrocarbons determining the exhaust gases toxicity may decrease the percentage value of cell survival. Additionally, it was proven that the average survival of cells after exposure to exhaust gases from tested vehicles meeting the more restrictive Euro 6 standard was lower than for vehicles meeting the Euro 3 standard thus indicating the higher toxicity of exhaust gases from newer vehicles.
The automotive industry is one of the fastest-growing sectors of the modern economy. Growing customer expectations, implementing solutions related to electromobility, and increasingly stringent legal restrictions in the field of environmental protection, determine the development and introduction of innovative technologies in the field of car production. To power the most modern vehicles that include electric and hybrid cars, packages of various types of lithium-ion cells are used, the number of which is constantly growing. After use, these batteries, due to their complex chemical composition, constitute hazardous waste that is difficult to manage and must be recycled in modern technological lines. The article presents the morphological characteristics of the currently used types of Li-ion cells, and the threats to the safety of people and the environment that may occur in the event of improper use of Li-ion batteries and accumulators have been identified and described on the basis of the Regulation of the European Parliament and Council (EC) No. 1272/2008 of 16 December 2008 and No. 1907/2006 of 18 December 2006 on the classification, labeling and packaging of substances and mixtures and the registration, evaluation, authorization and restriction of chemicals (REACH), establishing the European Chemicals Agency.
Purpose The purpose of this paper is to examine the toxicological impacts of exhaust generated during the combustion process of aviation fuel containing synthesized hydrocarbons. Design/methodology/approach Tests on aircraft turbine engines in full scale are complex and expensive. Therefore, a miniature turbojet engine was used in this paper as a source of exhaust gases. Toxicity was tested using innovative BAT–CELL Bio–Ambient Cell method, which consists of determination of real toxic impact of the exhaust gases on the human lung A549 and mouse L929 cells. The research was of a comparative nature. The engine was powered by a conventional jet fuel and a blend of conventional jet fuel with synthesized hydrocarbons. Findings The results show that the BAT–CELL method allows determination of the real exhaust toxicity during the combustion process in a turbine engine. The addition of a synthetic component to conventional jet fuel affected the reduction of toxicity of exhaust gases. It was confirmed for both tested cell lines. Originality/value In the literature related to the area of aviation, numerous publications in the field of testing the emission of exhaust gaseous components, particulates or volatile organic compounds can be found. However, there is a lack of research related to the evaluation of the real exhaust toxicity. In addition, it appears that the data given in aviation sector, mainly related to the emission levels of gaseous exhaust components (CO, Nox and HC) and particulate matters, might be insufficient. To fully describe the engine exhaust emissions, they should be supplemented with additional tests, i.e. in terms of toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.