SUMMARY Analysis of de novo CNVs (dnCNVs) from the full Simons Simplex Collection (SSC) (N = 2,591 families) replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2). The addition of published CNV data from the Autism Genome Project (AGP) and exome sequencing data from the SSC and the Autism Sequencing Consortium (ASC) shows that genes within small de novo deletions, but not within large dnCNVs, significantly overlap the high-effect risk genes identified by sequencing. Alternatively, large dnCNVs are found likely to contain multiple modest-effect risk genes. Overall, we find strong evidence that de novo mutations are associated with ASD apart from the risk for intellectual disability. Extending the transmission and de novo association test (TADA) to include small de novo deletions reveals 71 ASD risk loci, including 6 CNV regions (noted above) and 65 risk genes (FDR ≤ 0.1).
Objective We deployed a Remote Patient Monitoring (RPM) program to monitor patients with coronavirus disease 2019 (COVID-19) upon hospital discharge. We describe the patient characteristics, program characteristics, and clinical outcomes of patients in our RPM program. Methods We enrolled COVID-19 patients being discharged home from the hospital. Enrolled patients had an app, and were provided with a pulse oximeter and thermometer. Patients self-reported symptoms, O2 saturation, and temperature daily. Abnormal symptoms or vital signs were flagged and assessed by a pool of nurses. Descriptive statistics were used to describe patient and program characteristics. A mixed-effects logistic regression model was used to determine the odds of a combined endpoint of emergency department (ED) or hospital readmission. Results A total of 295 patients were referred for RPM from five participating hospitals, and 225 patients were enrolled. A majority of enrolled patients (66%) completed the monitoring period without triggering an abnormal alert. Enrollment was associated with a decreased odds of ED or hospital readmission (adjusted odds ratio: 0.54; 95% confidence interval: 0.3–0.97; p = 0.039). Referral without enrollment was not associated with a reduced odds of ED or hospital readmission. Conclusion RPM for COVID-19 provides a mechanism to monitor patients in their home environment and reduce hospital utilization. Our work suggests that RPM reduces readmissions for patients with COVID-19 and provides scalable remote monitoring capabilities upon hospital discharge. RPM for postdischarge patients with COVID-19 was associated with a decreased risk of readmission to the ED or hospital, and provided a scalable mechanism to monitor patients in their home environment.
Although immune checkpoint inhibitors (ICIs), such as anti–programmed cell death protein–1 (PD-1), can deliver durable antitumor effects, most patients with cancer fail to respond. Recent studies suggest that ICI efficacy correlates with a higher load of tumor-specific neoantigens and development of vitiligo in patients with melanoma. Here, we report that patients with low melanoma neoantigen burdens who responded to ICI had tumors with higher expression of pigmentation-related genes. Moreover, expansion of peripheral blood CD8+ T cell populations specific for melanocyte antigens was observed only in patients who responded to anti–PD-1 therapy, suggesting that ICI can promote breakdown of tolerance toward tumor-lineage self-antigens. In a mouse model of poorly immunogenic melanomas, spreading of epitope recognition toward wild-type melanocyte antigens was associated with markedly improved anti–PD-1 efficacy in two independent approaches: introduction of neoantigens by ultraviolet (UV) B radiation mutagenesis or the therapeutic combination of ablative fractional photothermolysis plus imiquimod. Complete responses against UV mutation-bearing tumors after anti–PD-1 resulted in protection from subsequent engraftment of melanomas lacking any shared neoantigens, as well as pancreatic adenocarcinomas forcibly overexpressing melanocyte-lineage antigens. Our data demonstrate that somatic mutations are sufficient to provoke strong antitumor responses after checkpoint blockade, but long-term responses are not restricted to these putative neoantigens. Epitope spreading toward T cell recognition of wild-type tumor-lineage self-antigens represents a common pathway for successful response to ICI, which can be evoked in neoantigen-deficient tumors by combination therapy with ablative fractional photothermolysis and imiquimod.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.