Confirmatory identification of hair colorants can be used to establish a connection between a suspect and the crime science or demonstrate the absence of such connections. A growing body of evidence shows that surface‐enhanced Raman spectroscopy (SERS) could be a confirmatory, minimally destructive, and fully noninvasive analysis of hair colorants. In SERS, a signal that provide the information about the chemical structure of both permanent and semipermanent dyes present on hair is enhanced by a million‐fold using noble metal nanostructures. However, it is unclear whether the information of hair colorants can be revealed if hair was contaminated or exposed to harsh environments such as sunlight and heat. In this work, we determine the effect of a short‐ and long‐term heat exposure on SERS‐based analysis of hair colored with blue and red permanent and semipermanent dyes. We found that short and especially long‐term heat exposure at 220°C could alter chemical structure, and consequently SERS spectra, of permanent and semipermanent colorants. This thermal degradation of permanent dyes complicates their direct identification using SERS. We also found that partial least squares discriminant analysis can be used to overcome this issue allowing for highly accurate identification of both permanent and semipermanent dyes on colored hair that was exposed to 220°C for 6–12 min. These results show that heat exposure of colored hair should be strongly considered upon their SERS‐based examination to avoid both false positive or false negative identification of chemical dyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.