Prostate cancer (PCa) is one of the major health problems of the aging male. The roles of dysregulated microRNAs in PCa remain unclear. In this study, we mined the public published data and found that miR-487a-3p was significantly downregulated in 38 pairs of clinical prostate tumor tissues compared with the normal tissues. We further verified this result by in situ hybridization on tissue chip and quantitative real-time polymerase chain reaction (qRT-PCR) in PCa/normal cells. miR-487a-3p targeting of cyclin D1 (CCND1) was identified using bioinformatics, qRT-PCR and western blot analyses. The cellular proliferation, cell cycle, migration, and invasion were assessed by cell counting kit-8, flow cytometry analysis and transwell assay. We discovered that overexpression of miR-487a-3p suppressed PCa cell growth, migration, invasion by directly targeting CCND1. Knockdown of CCND1 in PCa cells showed similar results. Meanwhile, the expression level of CCND1 was significantly upregulated in the PCa tissues and cell lines, which presented negative correlation with the expression of miR-487a-3p. More important, we demonstrated significantly reduced growth of xenograft tumors of stable miR-487a-3p-overexpressed human PCa cells in nude mice. Taken together, for the first time, our results revealed that miR-487a-3p as a tumor suppressor of PCa could target CCND1. Our finding might reveal miR-487a-3p could be potentially contributed to the pathogenesis and a clinical biomarker or the new potential therapeutic target of PCa.
Immunostimulatory regimens are a game changer in the fight against cancer, but still only a minority of patients achieve clinical benefit. Combination with immunomodulatory drugs and agents converting otherwise non-immunogenic forms of cell death into bona fide “immunogenic cell death” (ICD) could improve the efficacy of these novel therapies. The aim of our study was to investigate conventional Amphotericin B (AmB) as an enhancer of antitumor immune responses. In tumor cell line models, AmB induced ICD with its typical hallmarks of calreticulin (CALR) expression and release of high mobility group box 1 (HMGB1) as well as Adenosine 5’-triphosphate (ATP). Interestingly, in contrast to non-ICD inducing treatments, ICD induction led to up-regulation of PD-L1-expression by ICD experiencing cells, resulting in decreased maturation of dendritic cells (DCs). Blocking this PD-L1 expression on tumor cells could unleash full ICD effects on antigen presenting cells. Even at sub-toxic concentrations, AmB was able to enhance CALR on leukemic blasts, particularly on phagocytic monoblastic THP-1 cells, which also showed features of “M1-like” differentiation after AmB exposure. The ability of AmB to increase the immunogenicity of tumor cells was confirmed in vivo in a mouse vaccination experiment. In conclusion, we demonstrate that AmB can promote antitumor immune responses in a dose-dependent manner by ICD induction, surface translocation of CALR on leukemic blasts even at sub-toxic concentrations, and “M1-like” polarization of phagocytic cells, making it noteworthy as potential booster for cancer immunotherapy. We additionally report for the first time that PD-L1 expression may be a feature of ICD, possibly as a negative feedback mechanism regulating the maturation status of DCs and thus indirectly affecting T-cell priming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.