The spillover of SARS-CoV-2 into humans has caused one of the most devastating pandemics in recorded history. Human-animal interactions have led to transmission events of SARS-CoV-2 from humans to wild and captive animals. However, many questions remain about how extensive SARS-CoV-2 exposure is in wildlife, the factors that influence wildlife transmission risk, and whether sylvatic cycles can generate novel variants with increased infectivity and virulence. We sampled 18 different wildlife species in the Eastern U.S. and detected widespread exposure to SARS-CoV-2 across wildlife species. Using quantitative reverse transcription polymerase chain reaction and whole genome sequencing, we conclusively detected SARS-CoV-2 in the Virginia opossum and had equivocal detections in six additional species. Species considered human commensals like squirrels, and raccoons had high seroprevalence, ranging between 62%-71%, and sites with high human use had three times higher seroprevalence than low human-use areas. SARS-CoV-2 genomic data from an infected opossum and molecular modeling exposed previously uncharacterized changes to amino acid residues observed in the receptor binding domain (RBD), which predicts improved binding between the spike protein and human angiotensin-converting enzyme (ACE2) compared to the dominant variant circulating at the time of isolation. These mutations were not identified in human samples at the time of collection. Overall, our results highlight widespread exposure to SARS-CoV-2 in wildlife and suggest that areas with high human activity may serve as important points of contact for cross-species transmission. Furthermore, this work highlights the potential role of wildlife in fuelingde novomutations that may eventually appear in humans.
Demographic factors are fundamental in shaping infectious disease dynamics. Aspects of populations that create structure, like age and sex, can affect patterns of transmission, infection intensity and population outcomes. However, studies rarely link these processes from individual to population-scale effects. Moreover, the mechanisms underlying demographic differences in disease are frequently unclear. Here, we explore sex-biased infections for a multi-host fungal disease of bats, white-nose syndrome, and link disease-associated mortality between sexes, the distortion of sex ratios, and the potential mechanisms underlying sex differences in infection. We collected data on host traits, infection intensity, and survival of five bat species at 42 sites across seven years. We found females were more infected than males for all five species. Females also had lower apparent survival over winter and accounted for a smaller proportion of populations over time. Notably, female-biased infections were evident by early hibernation and likely driven by sex-based differences in autumn mating behavior. Male bats were more active during autumn, which likely reduced replication of the cool-growing fungus. Higher disease impacts in female bats may have cascading effects on bat populations beyond the hibernation season by limiting recruitment and increasing the risk of Allee effects.
Demographic factors are fundamental in shaping infectious disease dynamics. Aspects of populations that create structure, like age and sex, can affect patterns of transmission, infection intensity and population outcomes. However, studies rarely link these processes from individual to population-scale effects. Moreover, the mechanisms underlying demographic differences in disease are frequently unclear. Here, we explore sex-biased infections for a multi-host fungal disease of bats, white-nose syndrome, and link disease-associated mortality between sexes, the distortion of sex ratios and the potential mechanisms underlying sex differences in infection. We collected data on host traits, infection intensity and survival of five bat species at 42 sites across seven years. We found females were more infected than males for all five species. Females also had lower apparent survival over winter and accounted for a smaller proportion of populations over time. Notably, female-biased infections were evident by early hibernation and likely driven by sex-based differences in autumn mating behaviour. Male bats were more active during autumn which likely reduced replication of the cool-growing fungus. Higher disease impacts in female bats may have cascading effects on bat populations beyond the hibernation season by limiting recruitment and increasing the risk of Allee effects.
Carnivores are ecologically important and sensitive to habitat loss and anthropogenic disruption. Here we measured trophic level and gut bacterial composition as proxies of carnivore ecological status across the Upper Peninsula, Michigan, for wild American marten (Martes americana; hereafter marten). In contrast to studies that have focused on omnivorous and herbivorous species, we find that marten, like other carnivore species without a cecum, are dominated by Firmicutes (52.35%) and Proteobacteria (45.31%) but lack Bacteroidetes. Additionally, a majority of the 12 major bacterial genera (occurring at ≥1%) are known hydrogen producers, suggesting these taxa may contribute to host energy requirements through fermentative production of acetate. Our study suggests that live trapping and harvest methods yield similar marten gut microbiome data. In addition, preserving undisturbed forest likely impacts marten ecology by measurably increasing marten trophic level and altering the gut microbiome. Our study underscores the utility of the gut microbiome as a tool to monitor the ecological status of wild carnivore populations.
Understanding host persistence with emerging pathogens is essential for conserving populations. Hosts may initially survive pathogen invasions through pre-adaptive mechanisms. However, whether pre-adaptive traits are directionally selected to increase in frequency depends on the heritability and environmental dependence of the trait and the costs of trait maintenance. Body condition is likely an important pre-adaptive mechanism aiding in host survival, although can be seasonally variable in wildlife hosts. We used data collected over seven years on bat body mass, infection, and survival to determine the role of host body condition during the invasion and establishment of the emerging disease, white-nose syndrome. We found that when the pathogen first invaded, bats with higher body mass were more likely to survive, but this effect dissipated following the initial epizootic. We also found that heavier bats lost more weight overwinter, but fat budgeting depended on infection severity. Lastly, we found little support that bat mass increased in the population after pathogen arrival, and there was high annual plasticity in individual bat masses. Overall, our results suggest that factors that contribute to host survival during pathogen invasion may diminish over time, and are potentially replaced by other host adaptations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.