StatementChest x-ray abnormalities in COVID-19 mirror those of CT, demonstrating bilateral peripheral consolidation. Chest x-ray findings have a lower sensitivity than initial RT-PCR testing (69% versus 91%, respectively). Key Results In a cohort of patients with COVID-19 infection and imaging follow-up, baseline chestx-ray had a sensitivity of 69%, compared to 91% for initial RT-PCR. Chest x-ray abnormalities preceded positive RT-PCR in 6/64 (9%) patients. Common chest x-ray findings mirror those previously described for CT: bilateral, peripheral, consolidation and/or ground glass opacities. I n P r e s sBackground Current COVID-19 radiological literature is dominated by CT and a detailed description of chest x-ray (CXR) appearances in relation to the disease time course is lacking. PurposeTo describe the time course and severity of the CXR findings of COVID-19 and correlate these with real time reverse transcription polymerase chain reaction (RT-PCR) testing for SARS-Cov-2 nucleic acid. Materials and MethodsRetrospective study of COVID-19 patients with RT-PCR confirmation and CXRs admitted across 4 hospitals evaluated between January and March 2020. Baseline and serial CXRs (total 255 CXRs) were reviewed along with RT-PCRs. Correlation with concurrent CTs (total 28 CTs) was made when available. Two radiologists scored each CXR in consensus for: consolidation, ground glass opacity (GGO), location and pleural fluid. A severity index was determined for each lung. The lung scores were summed to produce the final severity score. ResultsThere were 64 patients (26 men, mean age 5619 years). Of these, 58, 44 and 38 patients had positive initial RT-PCR (91%, [CI: 81-96%]), abnormal baseline CXR (69%, [CI: 56-80%]) and positive initial RT-PCR with abnormal baseline CXR (59 [CI:46-71%]) respectively. Six patients (9%) showed CXR abnormalities before eventually testing positive on RT-PCR. Sensitivity of initial RT-PCR (91% [95% CI: 83-97%]) was higher than baseline CXR (69% [95% CI: 56-80%]) (p = 0.009). Radiographic (mean 6 5 days) and virologic recovery (mean 8 6 days) were not significantly different (p= 0.33). Consolidation was the most common finding (30/64, 47%), followed by GGO (21/64, 33%). CXR abnormalities had a peripheral (26/64, 41%) and lower zone distribution (32/64, 50%) with bilateral involvement (32/64, 50%). Pleural effusion was uncommon (2/64, 3%). The severity of CXR findings peaked at 10-12 days from the date of symptom onset. ConclusionChest x-ray findings in COVID-19 patients frequently showed bilateral lower zone consolidation which peaked at 10-12 days from symptom onset. Abbreviations:RT-PCR -reverse transcriptase polymerase chain reaction, GGO-ground glass opacity
Abbreviations (no more than 10): CT = Computed Tomography CXR = Chest radiograph RT-PCR = Reverse Transcription Polymerase Chain Reaction SARS = Severe acute respiratory syndrome Key Results: 1. Chest radiograph and CT findings of 21 patients with confirmed 2019 novel coronavirus infection in Shenzhen and Hong Kong are described and compared 2. A literature review and tabulation of the radiographic features in original publications are presented 3. One asymptomatic patient had evidence of consolidation on chest CT Abstract: Background: COVID-19 (formerly known as the 2019 novel coronavirus [2019-nCoV]) has rapidly spread in mainland China and into multiple countries worldwide. The radiographic profile of this infection continues to evolve as more cases present beyond the epicenter of Wuhan, China. Purpose: We present 21 COVID-19 cases from two Chinese centers with CT and chest radiograph (CXR) findings, as well as follow-up imaging in 5 cases. Materials and Methods: Retrospective study in Shenzhen and Hong Kong. Patients with COVID-19 infection were included. A systematic review of the published literature on COVID-19 infection's radiological features. Results: The predominant imaging pattern is of ground-glass opacification with occasional consolidation in the peripheries. Pleural effusions and lymphadenopathy were absent in all cases. Patients demonstrate evolution of the ground-glass opacities into consolidation, and subsequent resolution of the airspaces changes. Ground-glass and consolidative opacities visible on CT are sometimes undetectable on chest radiographs, suggesting that CT is a more sensitive imaging modality for investigation. The systematic review identified 4 other studies confirming the findings of bilateral and peripheral ground glass with or without consolidation as the predominant finding on CT chest examinations. Conclusion: The COVID-19 infection pulmonary manifestation is predominantly characterized by ground-glass opacification with occasional consolidation on CT. Radiographic findings in patients presenting in Shenzhen and Hong Kong are in keeping with 4 previous publications from other sites.
The growing utilisation of indwelling pleural catheters (IPCs) has put forward a new era in the management of recurrent symptomatic pleural effusions. IPC use is safe compared to talc pleurodesis, though complications can occur. Pleural infection affects <5% of patients, and is usually responsive to antibiotic treatment without requiring catheter removal or surgery. Pleural loculations develop over time, limiting drainage in 10% of patients, which can be improved with intrapleural fibrinolytic therapy. Catheter tract metastasis can occur with most tumours but is more common in mesothelioma. The metastases usually respond to analgaesics and/or external radiotherapy. Long-term intermittent drainage of exudative effusions or chylothorax can potentially lead to loss of nutrients, though no data exist on any clinical impact. Fibrin clots within the catheter lumen can result in blockage. Chest pain following IPC insertion is often mild, and adjustments in analgaesics and drainage practice are usually all that are required. As clinical experience with the use of IPC accumulates, the profile and natural course of complications are increasingly described. We aim to summarise the available literature on IPC-related complications and the evidence to support specific strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.