We describe a new correspondence between four-dimensional conformal field theories with extended supersymmetry and two-dimensional chiral algebras. The meromorphic correlators of the chiral algebra compute correlators in a protected sector of the four-dimensional theory. Infinite chiral symmetry has far-reaching consequences for the spectral data, correlation functions, and central charges of any four-dimensional theory with ${\mathcal N}=2$ superconformal symmetry.Comment: 75 pages. v3: minor corrections. Final version -- published in Communications in Mathematical Physic
In this work we initiate the conformal bootstrap program for N = 2 superconformal field theories in four dimensions. We promote an abstract operator-algebraic viewpoint in order to unify the description of Lagrangian and non-Lagrangian theories, and formulate various conjectures concerning the landscape of theories. We analyze in detail the four-point functions of flavor symmetry current multiplets and of N = 2 chiral operators. For both correlation functions we review the solution of the superconformal Ward identities and describe their superconformal block decompositions. This provides the foundation for an extensive numerical analysis discussed in the second half of the paper. We find a large number of constraints for operator dimensions, OPE coefficients, and central charges that must hold for any N = 2 superconformal field theory.
We develop the conformal bootstrap program for six-dimensional conformal field theories with (2, 0) supersymmetry, focusing on the universal four-point function of stress tensor multiplets. We review the solution of the superconformal Ward identities and describe the superconformal block decomposition of this correlator. We apply numerical bootstrap techniques to derive bounds on operator product expansion (OPE) coefficients and scaling dimensions from the constraints of crossing symmetry and unitarity. We also derive analytic results for the large spin spectrum using the light cone expansion of the crossing equation. Our principal result is strong evidence that the A 1 theory realizes the minimal allowed central charge (c ¼ 25) for any interacting (2, 0) theory. This implies that the full stress tensor four-point function of the A 1 theory is the unique unitary solution to the crossing symmetry equation at c ¼ 25. For this theory, we estimate the scaling dimensions of the lightest unprotected operators appearing in the stress tensor operator product expansion. We also find rigorous upper bounds for dimensions and OPE coefficients for a general interacting (2, 0) theory of central charge c. For large c, our bounds appear to be saturated by the holographic predictions obtained from eleven-dimensional supergravity.
It was recently understood that one can identify a chiral algebra in any fourdimensional N = 2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.
We study the spectrum of local operators living on a defect in a generic conformal field theory, and their coupling to the local bulk operators. We establish the existence of universal accumulation points in the spectrum at large s, s being the charge of the operators under rotations in the space transverse to the defect. Our tools include a formula that inverts the bulk to defect OPE, analogous to the Caron-Huot formula for the four-point function [1]. Analyticity of the formula in s implies that the scaling dimensions of the defect operators are aligned in Regge trajectories ∆(s). These results require the correlator of two local operators and the defect to be bounded in a certain region, a condition that we do not prove in general. We check our conclusions against examples in perturbation theory and holography, and we make specific predictions concerning the spectrum of defect operators on Wilson lines. We also give an interpretation of the large s spectrum in the spirit of the work of Alday and Maldacena [2].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.