Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.
De novo root regeneration (DNRR) is a developmental process to regenerate adventitious roots from wounded tissues. Phytohormone signaling pathways involved in microbial resistance are mobilized after cutting and influence de novo root regeneration. Microbes may positively or negatively influence the development and stress responses of a plant. However, most studies on the molecular mechanisms of de novo organogenesis are performed in aseptic conditions. Thus, the potential crosstalk between organ regeneration and biotic stresses is underexplored. Here, we report the development of a versatile experimental system to study the impact of microbes on DNRR. Using this system, we found that bacteria inhibited root regeneration by activating, but is not limited to, the Pathogen-Associated Molecular Pattern (PAMP)-trigged immunity. Sensing bacterial derived flagellin 22 peptide (flg22) inhibited root regeneration by interfering with the formation of an auxin maximum at wound site. Such inhibition relied on the receptor complex recognizing microbial patterns but may bypass the requirement of salicylic acid (SA) signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.