The number of alien plants escaping from cultivation into native ecosystems is increasing steadily. We provide an overview of the historical, contemporary and potential future roles of ornamental horticulture in plant invasions. We show that currently at least 75% and 93% of the global naturalised alien flora is grown in domestic and botanical gardens, respectively. Species grown in gardens also have a larger naturalised range than those that are not. After the Middle Ages, particularly in the 18th and 19th centuries, a global trade network in plants emerged. Since then, cultivated alien species also started to appear in the wild more frequently than non-cultivated aliens globally, particularly during the 19th century. Horticulture still plays a prominent role in current plant introduction, and the monetary value of live-plant imports in different parts of the world is steadily increasing. Historically, botanical gardens - an important component of horticulture - played a major role in displaying, cultivating and distributing new plant discoveries. While the role of botanical gardens in the horticultural supply chain has declined, they are still a significant link, with one-third of institutions involved in retail-plant sales and horticultural research. However, botanical gardens have also become more dependent on commercial nurseries as plant sources, particularly in North America. Plants selected for ornamental purposes are not a random selection of the global flora, and some of the plant characteristics promoted through horticulture, such as fast growth, also promote invasion. Efforts to breed non-invasive plant cultivars are still rare. Socio-economical, technological, and environmental changes will lead to novel patterns of plant introductions and invasion opportunities for the species that are already cultivated. We describe the role that horticulture could play in mediating these changes. We identify current research challenges, and call for more research efforts on the past and current role of horticulture in plant invasions. This is required to develop science-based regulatory frameworks to prevent further plant invasions.
The ecological impact of F. × bohemica on native forbs is not just a result of competition for shared resources, but it also appears to have a large allelopathic component. Still, regular mechnical control successfully eliminated allelopathic effects. Therefore, allelopathy will create an additional challenge to knotweed management and ecological restoration only if the allelochemicals are found to persist in the soil. More research is needed to examine the mechanisms underlying Fallopia allelopathy, and the long-term effects of soil residues.
Biotic resistance represents an important natural barrier to potential invaders throughout the world, yet the underlying mechanisms that drive such resistance are still debated. In theory, native communities should repel both functionally similar invaders which compete for the same resources, and invaders which possess less competitive traits. However, environmental stress, trade‐offs across vital rates and competition‐induced plastic trait shifts may modify expected competitive outcomes, thereby influencing invasion dynamics. In order to test these theoretical links between trait distributions and biotic resistance, we performed a mesocosm experiment with 25 non‐native ornamental species invading native plant communities. Each non‐native species was grown with and without the native community under two watering treatments (regular and reduced). We measured biotic resistance as the difference in performance of non‐native individuals grown with and without the community in terms of their survival, growth and reproduction. We quantified overall functional dissimilarity between non‐native ornamental individuals and native communities based on the combination of plant height, specific leaf area and seed mass. Then, assuming each of these traits is also potentially linked to competitive ability, we measured the position of non‐natives on trait hierarchies. While height is positively correlated with competitive ability for light interception, conservative leaf and seed characteristics provide greater tolerance to competition for other resources. Finally, we quantified plastic trait shifts of non‐native individuals induced by competition. Indeed, the native community repelled functionally similar individuals by lowering the invader's survival rate. Simultaneously, shorter ornamental individuals with larger specific leaf areas were less tolerant to biotic resistance from the community across vital rates, although the effect of trait hierarchies often depended on watering conditions. Finally, non‐natives responded to competition by shifting their traits. Most importantly, individuals with more competitive traits were able to overcome biotic resistance also through competition‐induced plastic trait shifts. Synthesis. Our results highlight that both functional dissimilarity and trait hierarchies mediate biotic resistance to ornamental plant invaders. Nevertheless, environmental stress as well as opposing trends across vital rates are also influential. Furthermore, plastic trait shifts can reinforce potential invaders’ competitive superiority, determining a positive feedback.
Hybridization is one of the fundamental mechanisms by which rapid evolution can occur in exotic species. If hybrids show increased vigour, this could significantly contribute to invasion success. Here, we compared the success of the two invasive knotweeds, Fallopia japonica and F. sachalinensis, and their hybrid, F. × bohemica, in competing against experimental communities of native plants. Using plant material from multiple clones of each taxon collected across a latitudinal gradient in Central Europe, we found that knotweed hybrids performed significantly better in competition with a native community and that they more strongly reduced the growth of the native plants. One of the parental species, F. sachalinensis, regenerated significantly less well from rhizomes, and this difference disappeared if activated carbon was added to the substrate, which suggests allelopathic inhibition of F. sachalinensis regeneration by native plants. We found substantial within-taxon variation in competitive success in all knotweed taxa, but variation was generally greatest in the hybrid. Interestingly, there was also significant variation within the genetically uniform F. japonica, possibly reflecting epigenetic differences. Our study shows that invasive knotweed hybrids are indeed more competitive than their parents and that hybridization increased the invasiveness of the exotic knotweed complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.