Ice entrenched microcosm represents a vast reservoir of novel species and a proxy for past climate reconstitution. Among glacial ecosystems, ice caves represent one of the scarcely investigated frozen habitats. To characterize the microbial diversity of perennial ice from karst ecosystems, Roche 454 sequencing of 16S rRNA gene amplicons from the underground ice block of Scarisoara Ice Cave (Romania) was applied. The temporal distribution of bacterial and archaeal community structures from newly formed, 400, and 900 years old ice layers was surveyed and analyzed in relation with the age and geochemical composition of the ice substrate. The microbial content of cave ice layers varied from 3.3 104 up to 7.5 105 cells mL−1, with 59–78% viability. Pyrosequencing generated 273,102 reads for the five triplicate ice samples, which corresponded to 3,464 operational taxonomic units (OTUs). The distribution of the bacterial phyla in the perennial cave ice varied with age, organic content, and light exposure. Proteobacteria dominated the 1 and 900 years old organic rich ice deposits, while Actinobacteria was mostly found in 900 years old ice strata, and Firmicutes was best represented in 400 years old ice. Cyanobacteria and Chlorobi representatives were identified mainly from the ice block surface samples exposed to sunlight. Archaea was observed only in older ice strata, with a high incidence of Crenarchaeota and Thaumarchaeaota in the 400 years old ice, while Euryarchaeota dominated the 900 years old ice layers, with Methanomicrobia representing the predominant taxa. A large percentage (55.7%) of 16S rRNA gene amplicons corresponded to unidentified OTUs at genus or higher taxa levels, suggesting a greater undiscovered bacterial diversity in this glacial underground habitat. The prokaryotes distribution across the cave ice block revealed the presence of 99 phylotypes specific for different ice layers, in addition to the shared microbial community. Ice geochemistry represented an important factor that explained the microbial taxa distribution in the cave ice block, while the total organic carbon content had a direct impact on the cell density of the ice microcosm. Both bacterial and archaeal community structures appeared to be affected by climate variations during the ice formation, highlighting the cave ice microbiome as a source of putative paleoclimatic biomarkers. This report constitutes the first high-throughput sequencing study of the cave ice microbiome and its distribution across the perennial underground glacier of an alpine ice cave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.