MicroRNAs (miRNAs) represent a class of small, non-coding RNAs with the main roles of regulating mRNA through its degradation and adjusting protein levels. In recent years, extraordinary progress has been made in terms of identifying the origin and exact functions of miRNA, focusing on their potential use in both the research and the clinical field. This review aims at improving the current understanding of these molecules and their applicability in the medical field. A thorough analysis of the literature consulting resources available in online databases such as NCBI, PubMed, Medline, ScienceDirect, and UpToDate was performed. There is promising evidence that in spite of the lack of standardized protocols regarding the use of miRNAs in current clinical practice, they constitute a reliable tool for future use. These molecules meet most of the required criteria for being an ideal biomarker, such as accessibility, high specificity, and sensitivity. Despite present limitations, miRNAs as biomarkers for various conditions remain an impressive research field. As current techniques evolve, we anticipate that miRNAs will become a routine approach in the development of personalized patient profiles, thus permitting more specific therapeutic interventions.Biogenesis of miRNA begins in the nucleus, where the transcription of its precursor, primary miRNA or pri-miRNA takes place under the influence of RNA polymerases II and III [11,12]. The resulting molecule is a hairpin-like structure, which contains a loop at one end [11]. This primordial mi-RNA precursor that is usually made up of hundreds of nucleotides is then processed consecutively by two RNase III enzymes [13][14][15]. The first enzyme to act upon the pri-miRNA, which still resides in the nucleus, is called Drosha or DCGR8, and turns it into a new hairpin-like structure of approximately 70 nucleotides, the Precursor-miRNA or pre-miRNA. The latter is then transported to the cytoplasm, with the help of Exportin-5, where it is cleaved again by the Ago2/Dicer complex leading to the short, mature miRNA double strands [16].Further on, one of the strands, usually known as the guide strand, will be integrated into the RNA-induced silencing complex (RISC), while the other one, known as the passenger strand, is going to be degraded, even though in some occasions it has been found to be also functional [17]. In most cases, the strand that contains the less stable 5 end or a uracil at the beginning is more likely to be selected as the guide strand [18][19][20]. In those situations, where the passenger strand is not degraded and both get incorporated into the miRISC complex, the mature miRNA in the guide strand will be the dominant one [21,22].The main role of miRNA in the human body is gene regulation [23] by mediating the degradation of mRNA and also by regulating transcription and translation through canonical and non-canonical mechanisms [4]. The canonical mechanism means that the miRISC complex containing the miRNA guide strand is exerting its action by binding to the targ...
The COVID-19 pandemic had a great negative impact on nursing homes, with massive outbreaks being reported in care facilities all over the world, affecting not only the residents but also the care workers and visitors. Due to their advanced age and numerous underlying diseases, the inhabitants of long-term care facilities represent a vulnerable population that should benefit from additional protective measures against contamination. Recently, multiple countries such as France, Spain, Belgium, Canada, and the United States of America reported that an important fraction from the total number of deaths due to the SARS-CoV-2 infection emerged from nursing homes. The scope of this paper was to present the latest data regarding the COVID-19 spread in care homes worldwide, identifying causes and possible solutions that would limit the outbreaks in this overlooked category of population. It is the authors’ hope that raising awareness on this matter would encourage more studies to be conducted, considering the fact that there is little information available on the impact of the SARS-CoV-2 pandemic on nursing homes. Establishing national databases that would register all nursing home residents and their health status would be of great help in the future not only for managing the ongoing pandemic but also for assessing the level of care that is needed in this particularly fragile setting.
MicroRNAs applications were vastly studied throughout the years, spanning from potential cancer biomarkers to targeted therapies for various diseases. Out of these utilizations, this paper focuses on their role in male infertility. Approximately 10–15% of worldwide couples are affected by infertility. Out of these, 50% are due to male determinants. The majority of cases still have an undetermined cause. Previous studies have found that the aberrant expression of microRNAs could be linked to certain reproductive dysfunctions in males. Further on, this study looked into the most recent literature published on this subject in order to assess the connection between the up-/down-regulation of various microRNAs and the roles they play in male infertility. MicroRNAs were found to be abundant and stable in the seminal liquid, which led to a facile identification using regular RNA detection methods. It was observed that the concentration of microRNAs in semen was modified in the case of patients suffering from asthenozoospermia and azoospermia. Moreover, idiopathic male infertility was associated with a single nucleotide polymorphism of the microRNA binding site. Future studies should focus their attention on discovering future treatments against male infertility targeting specific microRNAs and also on developing new and improved contraceptive methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.