In the attempt to respond to market demands, new techniques for wireless communication systems have been proposed to ensure, to all active users that are sharing the same network cell, an increased quality of service, regardless of any environmental factors, such as their position within the cell, time, space, climate, and noise. One example is the nonorthogonal multiple access (NOMA) technique, proposed within the 5G standard, known for supporting a massive connectivity and a more efficient use of radio resources. This paper presents two new sets of complex codes— multiple-user shared-access (MUSA) and extended MUSA (EMUSA), and an algorithm of allocation such that the intercorrelation should be as reduced as possible that can be used in MUSA for 5G NOMA-based technique scheme. Also, it analyzes the possibility of creating complex codes starting from PN (cPN), which is a novel idea proposed in this paper, whose results are promising with respect to the overall system performances. First, a description of the basic principles of MUSA are presented; next, the description of the proposed system will be provided, whose performance will be tested using Monte Carlo MATLAB simulations based on bit error rate (BER) versus signal-to-noise ratio (SNR). The system performances are evaluated in different scenarios and compared with classical code division multiple access (CDMA) having the following system parameters in sight: the number of antennas at the receiver side and the number of active users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.