Elderly people are the assets of the country and the government can ensure their peaceful and healthier life. Life expectancy of individuals has expanded with technological advancements and survey tells that the elderly population will become double in the year 2030. The noninfectious cognitive dysfunction is the most important risk factor among elderly people due to a decline in their physiological function. Alzheimer, Vascular Dementia, and Dementia are the key reasons for cognitive inabilities. These diseases require manual assistance, which is difficult to provide in this fast-growing world. Prevention and early detection are the wise solution for the above diseases. Diabetes and hypertension are considered as main risk factors allied with Alzheimer's disease. Our proposed work applies a two-stage classification technique to improve prediction accuracy. In the first stage, we train a Support vector machine and a Random Forest algorithm to analyze the influence of diabetes and high blood pressure on cognitive decline. In the second stage, the cognitive function of the person with the possibility of Dementia is assessed using the neuropsychological test called Cognitive Ability Test (CAT). Multinomial Logistic Regression algorithm is applied to CAT results to predict the possibility of cognitive decline in their postlife. We classified the risk factor using the operational definitions: “No Alzheimer’s,” “Uncertain Alzheimer’s,” and “Definite Alzheimer’s”. SVM of stage 1 classifier predicts with an accuracy of 0.86 and Random Forest with an accuracy of 0.71. Multinomial Logistic algorithm of stage 2 classifier accuracy is 0.89. The proposed work enables early prediction of a person at risk of Alzheimer's Disease using clinical data.
The Internet of Things (IoT) is bringing a new dimension to the smart farming market. This helps the user to collect the data from the agricultural fields in real time and move it to remote areas for processing. With the available sensor data and the image taken from the fields, automated disease prediction is possible. Deep neural network is used for classification of disease using the leaf images. Agriculture is the backbone of our country, but our output is poor when compared to the global standards due to lack of using technologies in the fields. In this work, various sensors like humidity sensor, pH level monitoring sensor, Temperature sensor, and Soil moisture sensor are used in the agricultural fields for collecting the real-time data. Multiple Sensors are installed in various locations of farms with one common controller Raspberry PI 3 module (RPI3), which was used to control all these sensors. Camera interfacing with RPI can be observed on leaf disease. Convolutional neural network architecture is used for leaf disease detection and classification. The accuracy of the disease classification system using convolutional neural network is 96% when the system is iterated for 50 epochs.
Lung cancer is the cellular fission of abnormal cells inside the lungs that leads to 72% of total deaths worldwide. Lung cancer are also recognized to be one of the leading causes of mortality, with a chance of survival of only 19%. Tumors can be diagnosed using a variety of procedures, including X-rays, CT scans, biopsies, and PET-CT scans. From the above techniques, Computer Tomography (CT) scan technique is considered to be one of the most powerful tools for an early diagnosis of lung cancers. Recently, machine and deep learning algorithms have picked up peak energy, and this aids in building a strong diagnosis and prediction system using CT scan images. But achieving the best performances in diagnosis still remains on the darker side of the research. To solve this problem, this paper proposes novel saliency-based capsule networks for better segmentation and employs the optimized pre-trained transfer learning for the better prediction of lung cancers from the input CT images. The integration of capsule-based saliency segmentation leads to the reduction and eventually reduces the risk of computational complexity and overfitting problem. Additionally, hyperparameters of pretrained networks are tuned by the whale optimization algorithm to improve the prediction accuracy by sacrificing the complexity. The extensive experimentation carried out using the LUNA-16 and LIDC Lung Image datasets and various performance metrics such as accuracy, precision, recall, specificity, and F1-score are evaluated and analyzed. Experimental results demonstrate that the proposed framework has achieved the peak performance of 98.5% accuracy, 99.0% precision, 98.8% recall, and 99.1% F1-score and outperformed the DenseNet, AlexNet, Resnets-50, Resnets-100, VGG-16, and Inception models.
Introduction:Increase in computing power and the deeper usage of the robust computing systems in the financial system is propelling the business growth, improving the operational efficiency of the financial institutions, and increasing the effectiveness of the transaction processing solutions used by the organizations. Problem:Despite that the financial institutions are relying on the credit scoring patterns for analyzing the credit worthiness of the clients, still there are many factors that are imminent for improvement in the credit score evaluation patterns. Objective:Machine learning is offering immense potential in Fintech space and determining a personal credit score. Organizations by applying deep learning and machine learning techniques can tap individuals who are not being serviced by traditional financial institutions. Methodology:One of the major insights into the system is that the traditional models of banking intelligence solutions are predominantly the programmed models that can align with the information and banking systems that are used by the banks. But in the case of the machine-learning models that rely on algorithmic systems require more integral computation which is intrinsic. Results:The test analysis of the proposed machine learning model indicates effective and enhanced analysis process compared to the non-machine learning solutions. The model in terms of using various classifiers indicate potential ways in which the solution can be significant. Conclusion: If the systems can be developed to align with more pragmatic terms for analysis, it can help in improving the process conditions of customer profile analysis, wherein the process models have to be developed for comprehensive analysis and the ones that can make a sustainable solution for the credit system management. Originality:The proposed solution is effective and the one conceptualized to improve the credit scoring system patterns. Limitations: The model is tested in isolation and not in comparison to any of the existing credit scoring patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.