Current 90nm Flash memory design introduces imaging critical points in several devices levels: active, poly, contacts, and first metallization. Among standard Resolution Enhancement Techniques (RET), Off-axis illuminations play a fundamental role, because they are capable of providing better imaging contrast and improved process latitude in low K 1 regime with very dense structures. Starting from the simulation study of real device layer geometries, object of this work is to propose a solution in terms of illumination schemes and mask choice (binary or halftone) for each critical layer, considering K 1 around 0.35 in ArF lithography. Dedicated off-axis illuminations will be compared to standard illumination modes, underlining the benefits in terms of ultimate resolution, process window and line edge roughness improvement. Experimental data confirmed the predicted gain in process robustness and, as expected, showed great line edge roughness improvement and less marginality to pattern collapse.
Commercially available photoresists for 193nm litho technology still suffer of undesired phenomena, which could eventually limit the stability of critical layer processing. Also standard CD-SEM inspection has its impact on the overall litho budget, as the interaction between the primary electron beam and the photoresist locally modifies target dimension. The reduction of this effect can be important to preserve geometrical and also electrical characteristics of the chip, as the local variation ofthe CD is detectable also after target etching and resist removal. In this paper different strategies to reduce its impact onto production wafers are investigated and compared. By applying a combination of these techniques, CD local modification can be lowered up to 75%.
Up to date, it is commonly reported in literature that the amount of copper hillocks is dependent on a) the total amount of residual Cu oxide after Cu CMP, and b) the Cu nitridation. The present work describes how that is only partially true: hillocks depend also on the kind of oxide and on the roughness of the surface after wet treatment. This contribution is even more important than what reported in literature. A tentative model for this behavior is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.