The Cdc25A phosphatase is essential for cell-cycle progression because of its function in dephosphorylating cyclin-dependent kinases. In response to DNA damage or stalled replication, the ATM and ATR protein kinases activate the checkpoint kinases Chk1 and Chk2, which leads to hyperphosphorylation of Cdc25A. These events stimulate the ubiquitin-mediated proteolysis of Cdc25A and contribute to delaying cell-cycle progression, thereby preventing genomic instability. Here we report that beta-TrCP is the F-box protein that targets phosphorylated Cdc25A for degradation by the Skp1/Cul1/F-box protein complex. Downregulation of beta-TrCP1 and beta-TrCP2 expression by short interfering RNAs causes an accumulation of Cdc25A in cells progressing through S phase and prevents the degradation of Cdc25A induced by ionizing radiation, indicating that beta-TrCP may function in the intra-S-phase checkpoint. Consistent with this hypothesis, suppression of beta-TrCP expression results in radioresistant DNA synthesis in response to DNA damage--a phenotype indicative of a defect in the intra-S-phase checkpoint that is associated with an inability to regulate Cdc25A properly. Our results show that beta-TrCP has a crucial role in mediating the response to DNA damage through Cdc25A degradation.
SCF ubiquitin ligases, composed of three major subunits, Skp1, Cul1, and one of many F box proteins (Fbps), control the proteolysis of important cellular regulators. We have inactivated the gene encoding the Fbp beta-Trcp1 in mice. beta-Trcp1(-/-) males show reduced fertility correlating with an accumulation of methaphase I spermatocytes. beta-Trcp1(-/-) MEFs display a lengthened mitosis, centrosome overduplication, multipolar metaphase spindles, and misaligned chromosomes. Furthermore, cyclin A, cyclin B, and Emi1, an inhibitor of the anaphase promoting complex, are stabilized in mitotic beta-Trcp1(-/-) MEFs. Indeed, we demonstrate that Emi1 is a bona fide substrate of beta-Trcp1. In contrast, stabilization of beta-catenin and IkappaBalpha, two previously reported beta-Trcp1 substrates, does not occur in the absence of beta-Trcp1 and instead requires the additional silencing of beta-Trcp2 by siRNA. Thus, beta-Trcp1 regulates the timely order of meiotic and mitotic events.
Precise monitoring of DNA replication and chromosome segregation ensures that there is accurate transmission of genetic information from a cell to its daughters. Eukaryotic cells have developed a complex network of checkpoint pathways that sense DNA lesions and defects in chromosome segregation, spindle assembly and the centrosome cycle, leading to an inhibition of cell-cycle progression for the time required to remove the defect and thus preventing genomic instability. The activation of checkpoints that are responsive to DNA damage or incomplete DNA replication ultimately results in the inhibition of cyclin-dependent kinases. This review focuses on our understanding of the biochemical mechanisms that specifically inactivate Cdc25 (cell division cycle 25) phosphatases to achieve this. The evidence for links between checkpoint deregulation and oncogenesis is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.