In recent decades, obesity has become a serious public health problem affecting both children and adults. Considering the multifactorial origin of obesity, including modifiable factors, childhood was identified as the golden age for investing in obesity prevention by both promoting proper lifestyles and actively intervening in possible triggers. The gut microbiota is at the center of the most recent scientific studies and plays a key role in obesity development because it is intimately linked to energetic-humoral variations in the host: its alterations can promote a state of excessive energy storage, and it can be manipulated to maintain energy homoeostasis. This review aims to offer a panoramic understanding of the interplay between obesity and the gut microbiota, focusing on the contribution that the gut microbiota could have to the prevention of childhood obesity and its complications in adulthood. Currently, the use of some specific probiotic strains has been shown to be able to act on some secondary metabolic consequences of obesity (such as liver steatosis and insulin resistance) without any effect on weight loss. Although definitive conclusions cannot be drawn on the real impact of probiotics and prebiotics, there is no doubt that they represent an exciting new frontier in the treatment of obesity and associated metabolic dysfunctions. Targeted studies randomized on specific populations and homogeneous for ethnicity, sex, and age are urgently needed to reach definitive conclusions about the influence of microbiota on weight. In particular, we still need more studies in the pediatric population to better understand when the switch to an obese-like gut microbiota takes place and to better comprehend the right timing of each intervention, including the use of pre/probiotics, to improve it.
We observed that most of the patients had a BMD that was lower than normal in both the lumbar column and in the femoral neck. Bone mass loss was higher in the lumbar region rather than in the femoral neck, due to spinal radiation therapy and to the effect of hormonal deficiencies. Particularly hypogonadism, but also multiple hormonal deficiencies, are associated with lower BMD values. Experience in clinical care of these patients suggests the importance of periodic evaluations of BMD, especially in those with secondary hormone deficiencies. Moreover, the periodic assessment of the hypothalamus-pituitary function is essential for an early diagnosis of hormonal insufficiency, primarily hypogonadism, to precociously detect bone mineral loss and to prevent pathological fractures, thus improving the quality of life.
BackgroundThe IGF system is recognised to be important for fetal growth. We previously described increased Insulin-like growth factor binding protein (IGFBP)-2 cord serum concentrations in intra-uterine growth retardation (IUGR) compared with appropriate for gestational age (AGA) newborns, and a positive relationship of IGFBP-2 with Interleukin (IL)-6. The role of cortisol in the fetus at birth is largely unknown, and interactions among peptides are their real effect on birth size is unknown. Furthermore, almost all studies have previously assayed peptides in serum several years after birth, and follow-up data from pregnancy are always lacking. This study aimed at establishing and clarifying the effect of cord serum insulin, IGF-II, IGFBP-2, cortisol and IL-6 concentrations on birth length and weight.Methods23 IUGR and 37 AGA subjects were followed up from the beginning of pregnancy, and were of comparable gestational age. Insulin, IGF-II, IGFBP-2, cortisol and IL-6 concentrations were assayed in cord serum at birth, and a multiple regression model was designed and applied to assess which were the significant biochemical determinants of birth size.ResultsInsulin, cortisol, and IL-6, showed similar concentrations in IUGR and AGA as previously described, whereas IGF-II was lower, and IGFBP-2 increased in IUGR compared with AGA. IGF-II serum concentration was found to have a significant positive effect on both birth length (r::0.546; p: 0.001) and weight (r:0.679; p: 0.0001). IGFBP-2 had a near significant negative effect on both birth weight (r:−0.342; p: 0.05) and length (r:−0.372; p:0.03).ConclusionIGF-II cord serum concentration was shown to have a significant positive effect on both birth length and weight, whereas IGFBP-2 had a significant negative effect. Insulin, cortisol, and IL-6 cord serum concentrations had no significant effect on birth size.
Type 1 diabetes (T1D) is the most common paediatric endocrine disease, and its frequency has been found to increase worldwide. Similar to all conditions associated with poorly regulated glucose metabolism, T1D carries an increased risk of infection. Consequently, careful compliance by T1D children with schedules officially approved for child immunization is strongly recommended. However, because patients with T1D show persistent and profound limitations in immune function, vaccines may evoke a less efficient immune response, with corresponding lower protection. Moreover, T1D is an autoimmune condition that develops in genetically susceptible individuals and some data regarding T1D triggering factors appear to indicate that infections, mainly those due to viruses, play a major role. Accordingly, the use of viral live attenuated vaccines is being debated. In this narrative review, we discussed the most effective and safe use of vaccines in patients at risk of or with overt T1D. Literature analysis showed that several problems related to the use of vaccines in children with T1D have not been completely resolved. There are few studies regarding the immunogenicity and efficacy of vaccines in T1D children, and the need for different immunization schedules has not been precisely established. Fortunately, the previous presumed relationship between vaccine administration and T1D appears to have been debunked, though some doubts regarding rotavirus vaccines remain. Further studies are needed to completely resolve the problems related to vaccine administration in T1D patients. In the meantime, the use of vaccines remains extensively recommended in children with this disease.
Severe acute respiratory coronavirus 2 (SARS-CoV-2) interacts with the host cells through its spike protein by binding to the membrane enzyme angiotensin-converting enzyme 2 (ACE2) and it can have a direct effect on endocrine function as ACE2 is expressed in many glands and organs with endocrine function. Furthermore, several endocrine conditions have features that might increase the risk of SARS-CoV-2 infection and the severity and course of the infection, as obesity for the underlying chronic increased inflammatory status and metabolic derangement, and for the possible changes in thyroid function. Vitamin D has immunomodulatory effects, and its deficiency has negative effects. Adrenal insufficiency and excess glucocorticoids affect immune conditions also besides metabolism. This review aims to analyze the rationale for the fear of direct effects of SARS-Cov-2 on endocrinological disorders, to study the influence of pre-existing endocrine disorders on the course of the infection, and the actual data in childhood. Currently, data concerning endocrine function during the pandemic are scarce in childhood and for many aspects definite conclusions cannot be drawn, however, data on properly managed patients with adrenal insufficiency at present are re-assuring. Too little attention has been paid to thyroid function and further studies may be helpful. The available data support a need for adequate vitamin D supplementation, caution in obese patients, monitoring of thyroid function in hospitalized patients, and confirm the need for an awareness campaign for the increased frequency of precocious puberty, rapidly progressive puberty and precocious menarche. The changes in lifestyle, the increased incidence of overweight and the change in the timing of puberty lead also to hypothesize that there might be an increase in ovarian dysfunction, as for example polycystic ovarian disease, and metabolic derangements in the next years, and in the future we might be facing fertility problems. This prompts to be cautious and maintain further surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.