The aim of this study is to estimate the mean annual power absorption of a selection of eight Wave Energy Converters (WECs) with different working principles. Based on these estimates a set of power performance measures that can be related to costs are derived. These are the absorbed energy per characteristic mass [kWh/kg], per characteristic surface area [MWh/m 2 ], and per root mean square of Power Take Off (PTO) force [kWh/N]. The methodology relies on numerical modelling. For each device, a numerical Wave-to-Wire (W2W) model is built based on the equations of motion. Physical effects are modelled according to the state-of-the-art within hydrodynamic modelling practise. Then, the W2W models are used to calculate the power matrices of each device and the mean annual power absorption at five different representative wave sites along the European Coast, at which the mean level of wave power resource ranges between 15 and 88 kW per metre of wave front. Uncertainties are discussed and estimated for each device.Computed power matrices and results for the mean annual power absorption are assembled in a summary sheet per device. Comparisons of the selected devices show that, despite very different working principles and dimensions, power performance measures vary much less than the mean annual power absorption. With the chosen units, these measures are all shown to be of the order of 1.
This paper deals with a novel concept by combining a spar-type floating wind turbine (FWT) and a Torus (donutshaped) point absorber-type wave energy converter (WEC) that is referred as the ‘Spar-Torus Combination’ (STC) herein. Concept feasibility study has been carried out by doing numerical simulations. It showed that the STC results in a positive synergy between wind and wave energy generation in terms of both capital investment and power production. As a novel concept, the STC concept is considered a simple compact combination of two technologies that have had high technology readiness level (TRL). It is suitable for deep water deployment and is not sensitive to seabed conditions and wave directions. Therefore, it is interesting to pursue a further development of this concept. The paper presents the technical information about the STC and highlights some challenging areas of the STC that should be carefully looked at to make it a proven concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.