Highlights d K13 artemisinin resistance-conferring mutations lead to reduced K13 abundance d K13 is localized to cytostome-like structures at the parasite periphery d Reduced K13 abundance impairs hemoglobin catabolism and lessens artemisinin activation d Reduced artemisinin activation limits cell damage, permitting parasite survival
The World Health Organisation (WHO) recommends artemisinin (ART) combinations for treatment of uncomplicated Plasmodium falciparum malaria. Understanding the interaction between co-administered drugs within combination therapies is clinically important to prevent unintended consequences. The WHO guidelines recommend second line treatments that combine artesunate with tetracycline, doxycycline, or clindamycin—antibiotics that target the Plasmodium relict plastid, the apicoplast. In addition, antibiotics can be used simultaneously against other infectious diseases, leading to their inadvertent combination with ARTs. One consequence of apicoplast inhibition is a perturbation to haemoglobin uptake and trafficking—a pathway required for activation of ART derivatives. Here, we show that apicoplast-targeting antibiotics reduce the abundance of the catalyst of ART activation (free haem) in P. falciparum, likely through diminished haemoglobin digestion. We demonstrate antagonism between ART and these antibiotics, suggesting that apicoplast inhibitors reduce ART activation. These data have potential clinical implications due to the reliance on—and widespread use of—both ARTs and these antibiotics in malaria endemic regions.
The malaria parasite, Plasmodium falciparum , proliferates rapidly in human erythrocytes by actively scavenging multiple carbon sources and essential nutrients from its host cell. However, a global overview of the metabolic capacity of intraerythrocytic stages is missing. Using multiplex 13 C‐labelling coupled with untargeted mass spectrometry and unsupervised isotopologue grouping, we have generated a draft metabolome of P. falciparum and its host erythrocyte consisting of 911 and 577 metabolites, respectively, corresponding to 41% of metabolites and over 70% of the metabolic reaction predicted from the parasite genome. An additional 89 metabolites and 92 reactions were identified that were not predicted from genomic reconstructions, with the largest group being associated with metabolite damage‐repair systems. Validation of the draft metabolome revealed four previously uncharacterised enzymes which impact isoprenoid biosynthesis, lipid homeostasis and mitochondrial metabolism and are necessary for parasite development and proliferation. This study defines the metabolic fate of multiple carbon sources in P. falciparum , and highlights the activity of metabolite repair pathways in these rapidly growing parasite stages, opening new avenues for drug discovery.
Artemisinin (ART) is a quick-killing and effective antimalarial activated by the haem derived from haemoglobin digestion. Mutations in the parasite's Kelch 13 (K13) protein compromise the efficacy of this drug. Recent studies indicate an undefined role for K13 in haemoglobin uptake. Here, we show that K13 is associated with the collar that constricts cytostomal invaginations required for the parasite to ingest host cytosol. Induced mislocalisation of K13 led to the formation of atypical invaginations lacking the cytostomal ring and constricted neck normally associated with cytostomes. Moreover, the levels of haemoglobin degradation products, haem and haemozoin, are decreased when K13 is inactivated. Our findings demonstrate that K13 is required for normal formation and/or stabilisation of the cytostome, and thereby the parasite's uptake of haemoglobin. This is consistent with perturbation of K13 function leading to decreased activation of ART and consequently, reduced killing.
Artemisinin (ART) is a quick-killing and effective antimalarial activated by the haem derived from haemoglobin digestion. Mutations in the parasite’s Kelch 13 (K13) protein compromise the efficacy of this drug. Recent studies indicate an undefined role for K13 in haemoglobin uptake. Here, we show that K13 is associated with the collar that constricts cytostomal invaginations required for the parasite to ingest host cytosol. Induced mislocalisation of K13 led to the formation of atypical invaginations lacking the cytostomal ring and constricted neck normally associated with cytostomes. Moreover, the levels of haemoglobin degradation products, haem and haemozoin, are decreased when K13 is inactivated. Our findings demonstrate that K13 is required for normal formation and/or stabilisation of the cytostome, and thereby the parasite’s uptake of haemoglobin. This is consistent with perturbation of K13 function leading to decreased activation of ART and consequently, reduced killing. Artemisinin-resistant parasites contain mutations in the gene encoding the Kelch 13 protein (K13). How K13 mutations result in artemisinin resistance is unclear. Here, we present evidence that normal K13 is required for the formation of the cytostome, a specialised parasite feeding apparatus used to endocytose host cell haemoglobin. Our results suggest that artemisinin resistance is due to a decrease in artemisinin activation brought about by a decrease in efficiency of haemoglobin uptake and consequently reduced production of haem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.